Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Exciton-lattice polaritons in multiple-quantum-well-based photonic crystals


Coherent interaction of an ensemble of dipole active atoms or excitons with a vacuum electromagnetic field has been studied extensively since its initial conception by Dicke in 19541,2,3,4,5,6. However, when the emitters are not only periodically arranged as in refs 2 to 4, but are also placed in a periodically modulated dielectric environment, the interaction between them is carried by the electromagnetic Bloch waves of the photonic crystal7,8. Here we report the first observation of this effect using a periodic arrangement of GaAs/AlGaAs quantum wells. The formation of coherently coupled photonic-crystal excitonic-lattice polaritons manifests in our experiments through enhanced reflectivity and reconstruction of the photonic bandgap in the vicinity of the excitons. Experimental evidence of hybrid light hole–heavy hole excitonic-lattice polaritons is also presented. Coherent coupling between excitons and Bloch waves is established through comparisons of the experimental results with theory. Finally, we demonstrate the tuning of these polariton states by an electric field.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dispersion schematic.
Figure 2: Angle-dependent reflectivity.
Figure 3: Polariton dispersion.
Figure 4: Reflectivity simulations and experimental data.
Figure 5: Electric field tuning.


  1. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article  ADS  Google Scholar 

  2. Ivchenko, E. L., Nesvizhskii, A. I. & Jorda, S. Bragg reflection of light from quantum well structures. Phys. Solid State 36, 1156–1161 (1994).

    ADS  Google Scholar 

  3. Deutsch, I. H., Spreeuw, R. J. C., Rolston, S. L. & Phillips, W. D. Photonic band gaps in optical lattices. Phys. Rev. A 52, 1394–1410 (1995).

    Article  ADS  Google Scholar 

  4. Hübner, M. et al. Optical lattices achieved by excitons in periodic quantum well structures. Phys. Rev. Lett. 83, 2841–2844 (1999).

    Article  ADS  Google Scholar 

  5. Inouye, S. et al. Superradiant Rayleigh scattering from a Bose–Einstein condensate. Science 285, 571–574 (1999).

    Article  Google Scholar 

  6. Scheibner, M. et al. Superradiance of quantum dots. Nature Phys. 3, 106–110 (2007).

    Article  ADS  Google Scholar 

  7. Deych, L. I. & Lisyansky, A. A. Polariton dispersion law in periodic-Bragg and near-Bragg multiple quantum well structures. Phys. Rev. B 62, 4242–4244 (2000).

    Article  ADS  Google Scholar 

  8. Sumioka, K., Nagahama, H. & Tsutsui, T. Strong coupling of exciton and photon modes in photonic crystal infiltrated with organic–inorganic layered perovskite. Appl. Phys. Lett. 78, 1328–1330 (2001).

    Article  ADS  Google Scholar 

  9. Birkl, G., Gatzke, M., Deutsch, I. H., Rolston, S. L. & Phillips, W. D. Bragg scattering from atoms in optical lattices. Phys. Rev. Lett. 75, 2823–2826 (1995).

    Article  ADS  Google Scholar 

  10. Ikawa, T. & Cho, K. Fate of the superradiant mode in a resonant Bragg reflector. Phys. Rev. B 66, 085338 (2002).

    Article  ADS  Google Scholar 

  11. Werchner, M. et al. One dimensional resonant Fibonacci quasicrystals: noncanonical linear and canonical nonlinear effects. Opt. Express 17, 6813–6828 (2009).

    Article  ADS  Google Scholar 

  12. Ivchenko, E. L. et al. Resonance optical spectroscopy of long-period quantum-well structures. Phys. Solid State 39, 1852–1858 (1997).

    Article  ADS  Google Scholar 

  13. Ivchenko, E. L., Voronov, M. M., Erementchouk, M. V., Deych, L. I. & Lisyansky, A. A. Multiple-quantum-well-based photonic crystals with simple and compound elementary supercells. Phys. Rev. B 70, 195106 (2004).

    Article  ADS  Google Scholar 

  14. Erementchouk, M. V., Deych, L. I. & Lisyansky, A. A. Optical properties of one-dimensional photonic crystals based on multiple-quantum-well structures. Phys. Rev. B 71, 235335 (2005).

    Article  ADS  Google Scholar 

  15. Erementchouk, M. V., Deych, L. I. & Lisyansky, A. A. Spectral properties of exciton polaritons in one-dimensional resonant photonic crystals. Phys. Rev. B 73, 115321 (2006).

    Article  ADS  Google Scholar 

  16. Biancalana, F., Mouchliadis, L., Creatore, C., Osborne, S. & Langbein, W. Microcavity polariton-like dispersion doublet in resonant Bragg gratings. Preprint at <http://arXiv:0904.0758v1> (2009).

  17. Kavokin, A. V. & Kaliteevski, M. A. Light-absorption effect on Bragg interference in multilayer semiconductor heterostructures. J. Appl. Phys. 79, 595–598 (1996).

    Article  ADS  Google Scholar 

  18. Ammerlahn, D. et al. Influence of the dielectric environment on the radiative lifetime of quantum-well excitons. Phys. Rev. B 61, 4801–4805 (2000).

    Article  ADS  Google Scholar 

  19. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  ADS  Google Scholar 

  20. Amo, A. et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–296 (2009).

    Article  ADS  Google Scholar 

  21. Gerace, D., Türeci, H. E., Imamoglu, A., Giovannetti, V. & Fazio, R. The quantum-optical Josephson interferometer. Nature Phys. 5, 281–284 (2009).

    Article  ADS  Google Scholar 

  22. Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010.

  23. Saba, M. et al. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities. Nature 414, 731–735 (2001).

    Article  ADS  Google Scholar 

  24. Lidzey, D. G., Bradley, D. D. C., Armitage, A., Walker, S. & Skolnick, M. S. Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities. Science 288, 1620–1623 (2000).

    Article  ADS  Google Scholar 

  25. Erementchouk, M. V. Dispersion Law of Exciton Polaritons in MQW Based Photonic Crystals, vol. 5924, 59240R (SPIE, 2005).

    Google Scholar 

  26. Soubusta, J. et al. Excitonic photoluminescence in symmetric coupled double quantum wells subject to an external electric field. Phys. Rev. B 60, 7740–7743 (1999).

    Article  ADS  Google Scholar 

  27. Westgaard, T., Zhao, Q. X., Fimland, B. O., Johannessen, K. & Johnsen, L. Optical properties of excitons in GaAs/Al0.3Ga0.7As symmetric double quantum wells. Phys. Rev. B 45, 1784–1792 (1992).

    Article  ADS  Google Scholar 

  28. Linnerud, I. & Chao, K. A. Exciton binding energies and oscillator strengths in a symmetric AlxGa1−xAs/GaAs double quantum well. Phys. Rev. B 49, 8487–8490 (1994).

    Article  ADS  Google Scholar 

Download references


This work was supported by United States Air Force Office of Scientific Research (AFOSR) grant no. FA9550-07-1-0391.

Author information

Authors and Affiliations



All authors have contributed to this paper and agree to its contents.

Corresponding author

Correspondence to Vinod M. Menon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goldberg, D., Deych, L., Lisyansky, A. et al. Exciton-lattice polaritons in multiple-quantum-well-based photonic crystals. Nature Photon 3, 662–666 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing