Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region


Animals make use of a wealth of optical physics to control and manipulate light, for example, in creating reflective animal colouration1,2,3 and polarized light signals4. Their precise optics often surpass equivalent man-made optical devices in both sophistication and efficiency5. Here, we report a biophysical mechanism that creates a natural full-visible-range achromatic quarter-wave retarder in the eye of a stomatopod crustacean. Analogous, man-made retardation devices are important optical components, used in both scientific research and commercial applications for controlling polarized light. Typical synthetic retarders are not achromatic, and more elaborate designs, such as, multilayer subwavelength gratings or bicrystalline constructions, only achieve partial wavelength independence6. In this work, we use both experimental measurements and theoretical modelling of the photoreceptor structure to illustrate how a novel interplay of intrinsic and form birefringence results in a natural achromatic optic that significantly outperforms current man-made optical devices.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The eye of a stomatopod crustacean.
Figure 2: Achromatic conversion of linearly to circularly polarized light by the R8 cell.
Figure 3: Minimized refractive index and corresponding birefringence for the ideal Odontodactylus scyllarus R8 quarter-wave retarder in Fig. 2.
Figure 4: Comparative retardation between two man-made quarter-wave retarders and the R8 cell.


  1. Vukusic, P. & Hooper, I. Directionally controlled fluorescence emission in butterflies. Science 310, 1151 (2005).

    Article  Google Scholar 

  2. Vukusic, P., Sambles, J. R. & Lawrence, C. R. Structural colour—colour mixing in wing scales of a butterfly. Nature 404, 457 (2000).

    ADS  Article  Google Scholar 

  3. Sutherland, R. L., Mathger, L. M., Hanlon, R. T., Urbas, A. M. & Stone, M. O. Cephalopod coloration model. I. Squid chromatophores and iridophores. J. Opt. Soc. Am. A 25, 588–599 (2008).

    ADS  Article  Google Scholar 

  4. Cronin, T. W. et al. Polarization vision and its role in biological signaling. Integr. Comparat. Biol. 43, 549–558 (2003).

    Article  Google Scholar 

  5. Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852–855 (2003).

    ADS  Article  Google Scholar 

  6. Kikuta, H., Ohira, Y. & Iwata, K. Achromatic quarter-wave plates using the dispersion of form birefringence. Appl. Opt. 36, 1566–1572 (1997).

    ADS  Article  Google Scholar 

  7. Morris, R. B. Iridescence from diffraction structures in the wing scales of Callophrys rubi, the green hairstreak. J. Entomol. A 49, 149–154 (1975).

    Google Scholar 

  8. Parker, A. R., Welch, V. L., Driver, D. & Martini, N. Structural colour—opal analogue discovered in a weevil. Nature 426, 786–787 (2003).

    ADS  Article  Google Scholar 

  9. Vigneron, J. P. et al. Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae:Cassidinae). Phys. Rev. E 76, 031907 (2007).

    ADS  Article  Google Scholar 

  10. Vukusic, P., Sambles, J. R., Lawrence, C.R. & Wotton R. J. Structural colour—now you see it now you don't. Nature 410, 36 (2001).

    ADS  Article  Google Scholar 

  11. Cuthill, I. C. et al. Disruptive coloration and background pattern matching. Nature 434, 72–74 (2005).

    ADS  Article  Google Scholar 

  12. Endler, J. A. On the measurement and classification of color in studies of animal color patterns. Biol. J. Linn. Soc. 41, 315–352 (1990).

    Article  Google Scholar 

  13. Roberts, N. W. & Needham, M. G. A mechanism of polarized light sensitivity in cone photoreceptors of the goldfish Carassius auratus. Biophys. J. 93, 3241–3248 (2007).

  14. Marshall, N. J. et al. The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). 1. Compound eye structure—the detection of polarized light. Philos. Trans. Roy. Soc. B 334, 33–56 (1991).

    ADS  Article  Google Scholar 

  15. Marshall, N. J., Cronin, T. W., Shashar, N. & Land, M. Behavioural evidence for polarisation vision in stomatopods reveals a potential channel for communication. Curr. Biol. 9, 755–758 (1999).

    Article  Google Scholar 

  16. Chiou, T.-H. et al. Circular polarization vision in a stomatopod crustacean. Curr. Biol. 18, 429–434 (2008).

    Article  Google Scholar 

  17. Marshall, N. J. et al. The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). 2. Color pigments in the eyes of stomatopod crustaceans—polychromatic vision by serial and lateral filtering. Philos. Trans. Roy. Soc. B 334, 57–84 (1991).

    ADS  Article  Google Scholar 

  18. Tilsch, M. K. et al. Production scale deposition of multilayer film structures for birefringent optical components. Thin Solid Films 516, 107–113 (2007).

    ADS  Article  Google Scholar 

  19. Kirschfeld, K. & Snyder, A. W. Photoreceptor Optics 56–77 (Springer, 1975).

    Book  Google Scholar 

  20. Bêche, B. & Gaviot, E. Matrix formalism to enhance the concept of effective dielectric constant. Opt. Commun. 219, 15–19 (2003).

    ADS  Article  Google Scholar 

  21. Roberts, N. W. & Gleeson, H. F. The absorption of polarized light by vertebrate photoreceptors. Vision Res. 44, 2643–2652 (2004).

    Article  Google Scholar 

  22. Roberts, N. W. The optics of vertebrate photoreceptors: anisotropy and form birefringence. Vision Res. 46, 3259–3266 (2006).

    Article  Google Scholar 

  23. Wehner, R., Bernard, G. D. & Geiger, E. Twisted and non-twisted rhabdoms and their significance for polarization detection in the bee. J. Comp. Physiol. 104, 225–245 (1975).

    Article  Google Scholar 

  24. Snyder, A. W. & McIntyre, P. Photoreceptor Optics 338–391 (Springer, 1975).

    Book  Google Scholar 

  25. Yi, D. E., Yan, Y. B., Liu, H. T., Si-Lu & Jin, G. F. Broadband achromatic phase retarder by subwavelength grating. Opt. Commun. 227, 49–55 (2003).

    ADS  Article  Google Scholar 

  26. Gaillot, D. P. et al. Composite organic–inorganic butterfly scales: production of photonic structures with atomic layer deposition. Phys. Rev. E 78, 031922 (2008).

    ADS  Article  Google Scholar 

  27. Valentine, J. et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008).

    ADS  Article  Google Scholar 

  28. Vukusic, P., Hallam, B. & Noyes, J. Brilliant whiteness in ultrathin beetle scales. Science 315, 348 (2007).

    ADS  Article  Google Scholar 

  29. Cronin, T. W., Marshall, N. J. & Caldwell, R. L. Visual pigment diversity in two genera of mantis shrimps implies rapid evolution (Crustacea; Stomatopoda). J. Comp. Physiol. A 179, 371–384 (1996).

    Article  Google Scholar 

  30. Jenkins, F. A. & White, H. E. Fundamentals of Optics 4th edn, 482 (McGraw-Hill International Editions, 1981).

    Google Scholar 

Download references


This work was supported by grants from the Air Force Office of Scientific Research, the Engineering and Physical Sciences Research Council (EPSRC), the Asian Office of Aerospace Research and Development, the Australian Research Council and the National Science Foundation.

Author information

Authors and Affiliations



All authors contributed extensively to all aspects of the work presented in this paper.

Corresponding author

Correspondence to N. W. Roberts.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Roberts, N., Chiou, TH., Marshall, N. et al. A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region. Nature Photon 3, 641–644 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing