Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optical antenna thermal emitters

Abstract

Optical antennas are a critical component in nanophotonics research1 and have been used to enhance nonlinear2,3 and Raman4 cross-sections and to make nanoscale optical probes5. In addition to their ‘receiving’ properties, optical antennas can operate in ‘broadcasting’ mode, and have been used to modify the emission rate6 and direction7 of individual molecules. In these applications the antenna must operate at frequencies given by existing light emitters. Using thermal excitation of optical antennas, we bypass this limitation and realize emitters at infrared frequencies where sources are less readily available. Specifically, we show that the thermal emission from a single SiC whisker antenna is attributable to well-defined, size-tunable Mie resonances8. Furthermore, we derive a fundamental limit on the antenna emittance and argue theoretically that these structures are nearly ideal black-body antennas. Combined with advancing progress in antenna design, these results could lead to optical antenna emitters operating throughout the infrared frequency range.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Extinction and modal properties of a cylindrical SiC antenna.
Figure 2: Schematic of the experimental setup for thermal emission measurements of individual antenna emitters.
Figure 3: Measurements demonstrating the fundamental connection between the extinction and emittance properties of SiC antennas.
Figure 4: Demonstration that SiC cylinders can serve as perfect black-body antennas.

Similar content being viewed by others

References

  1. Schuck, P. J., Fromm, D. P., Sundaramurthy, A., Kino, G. S. & Moerner, W. E. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennae. Phys. Rev. Lett. 94, 017402 (2005).

    Article  ADS  Google Scholar 

  2. Mühlschlegel, P., Eisler, H. J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    Article  ADS  Google Scholar 

  3. Kim, S. et al. High harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008).

    Article  ADS  Google Scholar 

  4. Jackel, F., Kinkhabwala, A. A. & Moerner, W. E. Gold bowtie nanoantennas for surface enhanced Raman scattering under controlled electrochemical potential. Chem. Phys. Lett. 446, 339–343 (2007).

    Article  ADS  Google Scholar 

  5. Farahani, J. N., Pohl, D. W., Eisler, H. J. & Hecht, B. Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys. Rev. Lett. 95, 017402 (2005).

    Article  ADS  Google Scholar 

  6. Kuhn, S., Hakanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

    Article  ADS  Google Scholar 

  7. Taminiau, T. H., Stefani, F. D., Segerink, F. B. & Van Hulst, N. F. Optical antennas direct single-molecule emission. Nature Photon. 2, 234–237 (2008).

    Article  Google Scholar 

  8. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles 181–213 (Wiley Inter-Science, 1998).

    Book  Google Scholar 

  9. Dowling, J. P. & Cornelius, C. M. Modification of Planck blackbody radiation by photonic band-gap structures. Phys. Rev. A 59, 4736–4746 (1999).

    Article  ADS  Google Scholar 

  10. Miyazaki, H. T. et al. Thermal emission of two-color polarized infrared waves from integrated plasmon cavities. Appl. Phys. Lett. 92, 141114 (2008).

    Article  ADS  Google Scholar 

  11. Puscasu, I. & Schaich, W. L. Narrow-band, tunable infrared emission from arrays of microstrip patches. Appl. Phys. Lett. 92, 233102 (2008).

    Article  ADS  Google Scholar 

  12. Shchegrov, A. V., Joulain, K., Carminati, R. & Greffet, J. J. Near-field spectral effects due to electromagnetic surface excitations. Phys. Rev. Lett. 85, 1548–1551 (2000).

    Article  ADS  Google Scholar 

  13. Greffet, J. J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).

    Article  ADS  Google Scholar 

  14. De Wilde, Y. et al. Thermal radiation scanning tunneling microscopy. Nature 444, 740–743 (2006).

    Article  ADS  Google Scholar 

  15. Ingvarsson, S., Klein, L. J., Au, Y. Y., Lacey, J. A. & Hamann, H. F. Enhanced thermal emission from individual antenna-like nanoheaters. Opt. Express 15, 11249–11254 (2007).

    Article  ADS  Google Scholar 

  16. Au, Y. Y., Skulason, H. S., Ingvarsson, S., Klein, L. J. & Hamann, H. F. Thermal radiation spectra of individual subwavelength microheaters. Phys. Rev. B 78, 085402 (2008).

    Article  ADS  Google Scholar 

  17. Greffet, J. J. & Nieto-Vesperinas, M. Field theory for generalized bidirectional reflectivity: derivation of Helmholtz's reciprocity and Kirchhoff's law. J. Opt. Soc. Am. A 15, 2735–2744 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  18. Schuller, J. A., Zia, R., Taubner, T. & Brongersma, M. L. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. Phys. Rev. Lett. 99, 107401 (2007).

    Article  ADS  Google Scholar 

  19. Pfeiffer, C. A., Economou, E. N. & Ngai, K. L. Phys. Rev. B 10, 3038–3051 (1974).

    Article  ADS  Google Scholar 

  20. Barbic, M., Mock, J. J., Smith, D. R. & Schultz, S. Single crystal silver nanowires prepared by the metal amplification method. J. Appl. Phys. 91, 9341–9345 (2002).

    Article  ADS  Google Scholar 

  21. Neubrech, F. et al. Resonances of individual metal nanowires in the infrared. Appl. Phys. Lett. 89, 253104 (2006).

    Article  ADS  Google Scholar 

  22. Olego, D. & Cardona, M. Temperature dependence of the optical phonons and transverse effective charge in 3C-SiC. Phys. Rev. B 25, 3889 (1982).

    Article  ADS  Google Scholar 

  23. Tang, L. et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nature Photon. 2, 226–229 (2008).

    Article  Google Scholar 

  24. Wurfel, P. Physics of Solar Cells 9–35 (Wiley-VCH, 2005).

    Book  Google Scholar 

  25. Kraus, J. D. & Marhefka, R. J. Antennas for All Applications 29 (McGraw Hill, 2001).

    Google Scholar 

  26. Li, J., Slandrino, A. & Engheta, N. Shaping light beams in the nanometer scale: a Yagi–Uda nanoantenna in the optical domain. Phys. Rev. B 76, 245403 (2007).

    Article  ADS  Google Scholar 

  27. Taminiau, T. H., Stefani, F. D. & Van Hulst, N. F. Enhanced directional excitation and emission of single emitters by a nano-optical Yagi–Uda antenna. Opt. Express 16, 16858–16866 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank R. Zia for many helpful discussions. This work was supported by Northrop Grumman's Space Technology Research Labs and a US Department of Defense Multidisciplinary University Research Initiative sponsored by the Air Force Office of Scientific Research (F49550-04-1-0437).

Author information

Authors and Affiliations

Authors

Contributions

J.A.S. and M.L.B. conceived the experiments. J.A.S. and T.T. designed the experimental apparatus. J.A.S. conducted the experiments and calculations. J.A.S. and M.L.B. co-wrote the manuscript.

Corresponding authors

Correspondence to Thomas Taubner or Mark L. Brongersma.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuller, J., Taubner, T. & Brongersma, M. Optical antenna thermal emitters. Nature Photon 3, 658–661 (2009). https://doi.org/10.1038/nphoton.2009.188

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing