Review Article | Published:

Nanowire photonics

Nature Photonics volume 3, pages 569576 (2009) | Download Citation

Subjects

Semiconductor nanowires, by definition, typically have cross-sectional dimensions that can be tuned from 2–200 nm, with lengths spanning from hundreds of nanometres to millimetres. These subwavelength structures represent a new class of semiconductor materials for investigating light generation, propagation, detection, amplification and modulation. After more than a decade of research, nanowires can now be synthesized and assembled with specific compositions, heterojunctions and architectures. This has led to a host of nanowire photonic devices including photodetectors, chemical and gas sensors, waveguides, LEDs, microcavity lasers, solar cells and nonlinear optical converters. A fully integrated photonic platform using nanowire building blocks promises advanced functionalities at dimensions compatible with on-chip technologies.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

  2. 2.

    , & Heteroepitaxial ultrafine wire-like growth of InAs on GaAs substrates. Appl. Phys. Lett. 58, 1080–1082 (1991).

  3. 3.

    et al. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003).

  4. 4.

    , , & Complete composition tunability of InGaN nanowires using a combinatorial approach. Nature Mater. 6, 951–956 (2007).

  5. 5.

    & Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

  6. 6.

    & A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208–211 (1998).

  7. 7.

    & Nanorod-superconductor composites: a pathway to materials with high critical current densities. Science 273, 1836–1840 (1996).

  8. 8.

    & Direct observation of vapor–liquid–solid nanowire growth. J. Am. Chem. Soc. 123, 3165–3166 (2001).

  9. 9.

    et al. One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80, 1058–1060 (2002).

  10. 10.

    & Germanium nanowire growth via simple vapor transport. Chem. Mater. 12, 605–607 (2000).

  11. 11.

    et al. Epitaxial integration of nanowires in microsystems by local micrometer-scale vapor-phase epitaxy. Small 4, 1741–1746 (2008).

  12. 12.

    , , & Synthesis of CdS and ZnS nanowires using single-source molecular precursors. J. Am. Chem. Soc. 125, 11498–11499 (2003).

  13. 13.

    , , , & General synthesis of manganese-doped IIVI and IIIV semiconductor nanowires. Nano Lett. 5, 1407–1411 (2005).

  14. 14.

    et al. Structural properties of 〈111〉B-oriented IIIV nanowires. Nature Mater. 5, 574–580 (2006).

  15. 15.

    et al. Epitaxial growth of indium arsenide nanowires on silicon using nucleation templates formed by self-assembled organic coatings. Adv. Mater. 19, 1801–1806 (2007).

  16. 16.

    & General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298–302 (2000).

  17. 17.

    , , & Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum. J. Am. Chem. Soc. 131, 9502–9503 (2009).

  18. 18.

    et al. Solution-liquid-solid growth of crystalline IIIV semiconductors: an analogy to vapor-liquid-solid growth. Science 270, 1791–1794 (1995).

  19. 19.

    et al. Crystallographic alignment of high-density gallium nitride nanowire arrays. Nature Mater. 3, 524–528 (2004).

  20. 20.

    , , & Controlled growth of Si nanowire arrays for device integration. Nano Lett. 5, 457–460 (2005).

  21. 21.

    et al. Si nanowire bridges in microtrenches: Integration of growth into device fabrication. Adv. Mater. 17, 2098–2102 (2005).

  22. 22.

    et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

  23. 23.

    , , , & Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers. Appl. Phys. Lett. 61, 2051–2053 (1992).

  24. 24.

    , & Polarization dependence of light emitted from GaAs p-n junctions in quantum wire crystals. J. Appl. Phys. 75, 4220–4225 (1994).

  25. 25.

    , , , & Synergetic nanowire growth. Nature Nanotech. 2, 541–544 (2007).

  26. 26.

    et al. Failure of the vapor–liquid–solid mechanism in Au-assisted MOVPE growth of InAs nanowires. Nano Lett. 5, 761–764 (2005).

  27. 27.

    et al. Nanowire arrays defined by nanoimprint lithography. Nano Lett. 4, 699–702 (2004).

  28. 28.

    , , & Equilibrium limits of coherency in strained nanowire heterostructures. J. Appl. Phys. 97, 114325 (2005).

  29. 29.

    et al. Epitaxial IIIV nanowires on silicon. Nano Lett. 4, 1987–1990 (2004).

  30. 30.

    , , & Control of InAs nanowire growth directions on Si. Nano Lett. 8, 3475–3480 (2008).

  31. 31.

    et al. Epitaxial growth of InP nanowires on germanium. Nature Mater. 3, 769–773 (2004).

  32. 32.

    et al. Monolithic GaAs/InGaP nanowire light emitting diodes on silicon. Nanotechnology 19, 305201 (2008).

  33. 33.

    et al. Au-free epitaxial growth of InAs nanowires. Nano Lett. 6, 1817–1821 (2006).

  34. 34.

    , , , & Mechanism of catalyst-free growth of GaAs nanowires by selective area MOVPE. J. Cryst. Growth 298, 616–619 (2007).

  35. 35.

    , & Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays. Nanotechnology 16, 2903–2907 (2005).

  36. 36.

    , & Fabrication of InP/InAs/InP core–multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy. Appl. Phys. Lett. 88, 133105 (2006).

  37. 37.

    et al. Self-organized GaN quantum wire UV lasers. J. Phys. Chem. B 107, 8721–8725 (2003).

  38. 38.

    et al. Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 4, 1975–1979 (2004).

  39. 39.

    et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature Mater. 7, 701–706 (2008).

  40. 40.

    , , & Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420, 57–61 (2002).

  41. 41.

    et al. Twinning superlattices in indium phosphide nanowires. Nature 456, 369–372 (2008).

  42. 42.

    , & Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett. 2, 83–86 (2002).

  43. 43.

    , , , & Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2002).

  44. 44.

    et al. One-dimensional steeplechase for electrons realized. Nano Lett. 2, 87–89 (2002).

  45. 45.

    , , & Nanowire electronic and optoelectronic devices. Mater. Today 9, 18–27 (2006).

  46. 46.

    et al. Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events. Nature Mater. 3, 380–384 (2004).

  47. 47.

    , , , & Dislocation-driven nanowire growth and Eshelby twist. Science 320, 1060–1063 (2008).

  48. 48.

    et al. Formation of chiral branched nanowires by the Eshelby Twist. Nature Nanotech. 3, 477–481 (2008).

  49. 49.

    et al. Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77, 1399–1401 (2000).

  50. 50.

    , , & Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001).

  51. 51.

    , & Microchannel networks for nanowire patterning. J. Am. Chem. Soc. 122, 10232–10233 (2000).

  52. 52.

    Nanotechnology: Wires on water. Nature 425, 243–244 (2003).

  53. 53.

    , & Langmuir–Blodgettry of nanocrystals and nanowires. Acc. Chem. Res. 41, 1662–1673 (2008).

  54. 54.

    et al. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 314, 1754–1757 (2006).

  55. 55.

    , , & Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

  56. 56.

    A revolution in optical manipulation. Nature 424, 810–816 (2003).

  57. 57.

    , , & Nanofabrication with holographic optical tweezers. Rev. Sci. Instrum. 73, 1956–1957 (2002).

  58. 58.

    et al. Optical trapping and integration of semiconductor nanowire assemblies in water. Nature Mater. 5, 97–101 (2006).

  59. 59.

    et al. Manipulation and assembly of nanowires with holographic optical traps. Opt. Express 13, 8906–8912 (2005).

  60. 60.

    , & Massively parallel manipulation of single cells and microparticles using optical images. Nature 436, 370–372 (2005).

  61. 61.

    et al. Dynamic manipulation and separation of individual semiconducting and metallic nanowires. Nature Photon. 2, 86–89 (2008).

  62. 62.

    et al. Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 125, 4728–4729 (2003).

  63. 63.

    , , & Semiconductor nanowires for subwavelength photonics integration. J. Phys. Chem. B 109, 15190–15213 (2005).

  64. 64.

    , , & Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B 107, 8816–8828 (2003).

  65. 65.

    et al. Room-temperature single nanoribbon lasers. Appl. Phys. Lett. 84, 1189–1191 (2004).

  66. 66.

    , , & Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003).

  67. 67.

    et al. Single gallium nitride nanowire lasers. Nature Mater. 1, 106–110 (2002).

  68. 68.

    et al. Near-infrared semiconductor subwavelength-wire lasers. Appl. Phys. Lett. 88, 163115 (2006).

  69. 69.

    , & Semiconductor nanowire ring resonator laser. Phys. Rev. Lett. 96, 143903 (2006).

  70. 70.

    , , , & Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation. Appl. Phys. Lett. 93, 051101 (2008).

  71. 71.

    et al. Hybrid single-nanowire photonic crystal and microresonator structures. Nano Lett. 6, 11–15 (2006).

  72. 72.

    & Far-field emission of a semiconductor nanowire laser. Opt. Lett. 29, 572–574 (2004).

  73. 73.

    , & Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire. Nano Lett. 6, 2707–2711 (2006).

  74. 74.

    , , , & Single GaAs/GaAsP coaxial core–shell nanowire lasers. Nano Lett. 9, 112–116 (2009).

  75. 75.

    et al. Growth and optical properties of strained GaAs-GaxIn1−xP core–shell nanowires. Nano Lett. 5, 1943–1947 (2005).

  76. 76.

    , , , & Characterization of Fabry-Pérot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy. Appl. Phys. Lett. 91, 131112 (2007).

  77. 77.

    , , , & Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001).

  78. 78.

    , & Nanowires for integrated multicolor nanophotonics. Small 1, 142–147 (2005).

  79. 79.

    , , & Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3, 343–346 (2003).

  80. 80.

    et al. Single quantum dot nanowire LEDs. Nano Lett. 7, 367–371 (2007).

  81. 81.

    et al. Nanoribbon waveguides for subwavelength photonics integration. Science 305, 1269–1273 (2004).

  82. 82.

    , , , & Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003).

  83. 83.

    et al. All-optical switching in a laterally coupled microring resonator by carrier injection. IEEE Photon. Technol. Lett. 15, 36–38 (2003).

  84. 84.

    et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816–819 (2003).

  85. 85.

    et al. Optical routing and sensing with nanowire assemblies. Proc. Natl Acad. Sci. USA 102, 7800–7805 (2005).

  86. 86.

    et al. Tunable nanowire nonlinear optical probe. Nature 447, 1098–1101 (2007).

  87. 87.

    , , , & Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 14, 158–160 (2002).

  88. 88.

    , , , & Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001).

  89. 89.

    et al. Near-field scanning photocurrent microscopy of a nanowire photodetector. Appl. Phys. Lett. 87, 043111 (2005).

  90. 90.

    , & Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nature Mater. 5, 352–356 (2006).

  91. 91.

    Recent advances in telecommunications avalanche photodiodes. J. Lightwave Technol. 25, 109–121 (2007).

  92. 92.

    & Nanophotonic light sources for fluorescence spectroscopy and cellular imaging. Angew. Chem. Int. Ed. 44, 1395–1398 (2005).

  93. 93.

    & A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

  94. 94.

    , , , & Nanowire dye-sensitized solar cells. Nature Mater. 4, 455–459 (2005).

  95. 95.

    et al. ZnO-Al2O3 and ZnO-TiO2 core–shell nanowire dye-sensitized solar cells. J. Phys. Chem. B 110, 22652–22663 (2006).

  96. 96.

    et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007).

  97. 97.

    & The US must help set international standards for nanotechnology. Nature Nanotech. 3, 635–636 (2008).

  98. 98.

    & Size reduction of a semiconductor nanowire laser by using metal coating. Proc. SPIE 6468, 64680I (2007).

  99. 99.

    et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007).

  100. 100.

    , , , & A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photon. 2, 496–500 (2008).

Download references

Acknowledgements

The authors would like to acknowledge here contributions of members of our research group and collaborators on this nanowire photonics programme. This work was supported by the Office of Basic Science, US Department of Energy and the Defense Advanced Research Projects Agency. P.Y. would like to thank the National Science Foundation for the A.T. Waterman Award.

Author information

Affiliations

  1. Department of Chemistry, University of California, Berkeley, California 94720, USA.

    • Ruoxue Yan
    • , Daniel Gargas
    •  & Peidong Yang
  2. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

    • Ruoxue Yan
    • , Daniel Gargas
    •  & Peidong Yang

Authors

  1. Search for Ruoxue Yan in:

  2. Search for Daniel Gargas in:

  3. Search for Peidong Yang in:

Corresponding author

Correspondence to Peidong Yang.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nphoton.2009.184

Further reading