Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanowire photonics

Semiconductor nanowires, by definition, typically have cross-sectional dimensions that can be tuned from 2–200 nm, with lengths spanning from hundreds of nanometres to millimetres. These subwavelength structures represent a new class of semiconductor materials for investigating light generation, propagation, detection, amplification and modulation. After more than a decade of research, nanowires can now be synthesized and assembled with specific compositions, heterojunctions and architectures. This has led to a host of nanowire photonic devices including photodetectors, chemical and gas sensors, waveguides, LEDs, microcavity lasers, solar cells and nonlinear optical converters. A fully integrated photonic platform using nanowire building blocks promises advanced functionalities at dimensions compatible with on-chip technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Semiconductor nanowire growth.
Figure 2: Semiconductor nanowire heterojunctions.
Figure 3: Nanowire assembly with optical trapping.
Figure 4: Nanowire nanolasers.
Figure 5: Nanowire waveguides and nonlinear optical converter.

References

  1. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    ADS  Google Scholar 

  2. Yazawa, M., Koguchi, M. & Hiruma, K. Heteroepitaxial ultrafine wire-like growth of InAs on GaAs substrates. Appl. Phys. Lett. 58, 1080–1082 (1991).

    ADS  Google Scholar 

  3. Xia, Y. et al. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003).

    Google Scholar 

  4. Kuykendall, T., Ulrich, P., Aloni, S. & Yang, P. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nature Mater. 6, 951–956 (2007).

    ADS  Google Scholar 

  5. Wagner, R. S. & Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

    ADS  Google Scholar 

  6. Morales, A. M. & Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208–211 (1998).

    ADS  Google Scholar 

  7. Yang, P. & Lieber, C. M. Nanorod-superconductor composites: a pathway to materials with high critical current densities. Science 273, 1836–1840 (1996).

    ADS  Google Scholar 

  8. Wu, Y. & Yang, P. Direct observation of vapor–liquid–solid nanowire growth. J. Am. Chem. Soc. 123, 3165–3166 (2001).

    Google Scholar 

  9. Björk, M. T. et al. One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80, 1058–1060 (2002).

    ADS  Google Scholar 

  10. Wu, Y. & Yang, P. Germanium nanowire growth via simple vapor transport. Chem. Mater. 12, 605–607 (2000).

    Google Scholar 

  11. Mølhave, K. et al. Epitaxial integration of nanowires in microsystems by local micrometer-scale vapor-phase epitaxy. Small 4, 1741–1746 (2008).

    Google Scholar 

  12. Barrelet, C. J., Wu, Y., Bell, D. C. & Lieber, C. M. Synthesis of CdS and ZnS nanowires using single-source molecular precursors. J. Am. Chem. Soc. 125, 11498–11499 (2003).

    Google Scholar 

  13. Radovanovic, P. V., Barrelet, C. J., Gradečak, S., Qian, F. & Lieber, C. M. General synthesis of manganese-doped IIVI and IIIV semiconductor nanowires. Nano Lett. 5, 1407–1411 (2005).

    ADS  Google Scholar 

  14. Johansson, J. et al. Structural properties of 〈111〉B-oriented IIIV nanowires. Nature Mater. 5, 574–580 (2006).

    ADS  Google Scholar 

  15. Mårtensson, T. et al. Epitaxial growth of indium arsenide nanowires on silicon using nucleation templates formed by self-assembled organic coatings. Adv. Mater. 19, 1801–1806 (2007).

    Google Scholar 

  16. Duan, X. & Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298–302 (2000).

    Google Scholar 

  17. Pan, A., Liu, R., Sun, M. & Ning, C-Z. Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum. J. Am. Chem. Soc. 131, 9502–9503 (2009).

    Google Scholar 

  18. Trentler, T. J. et al. Solution-liquid-solid growth of crystalline IIIV semiconductors: an analogy to vapor-liquid-solid growth. Science 270, 1791–1794 (1995).

    ADS  Google Scholar 

  19. Kuykendall, T. et al. Crystallographic alignment of high-density gallium nitride nanowire arrays. Nature Mater. 3, 524–528 (2004).

    ADS  Google Scholar 

  20. Hochbaum, A. I., Fan, R., He, R. & Yang, P. Controlled growth of Si nanowire arrays for device integration. Nano Lett. 5, 457–460 (2005).

    ADS  Google Scholar 

  21. He, R. et al. Si nanowire bridges in microtrenches: Integration of growth into device fabrication. Adv. Mater. 17, 2098–2102 (2005).

    Google Scholar 

  22. Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

    ADS  Google Scholar 

  23. Yazawa, M., Koguchi, M., Muto, A., Ozawa, M. & Hiruma, K. Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers. Appl. Phys. Lett. 61, 2051–2053 (1992).

    ADS  Google Scholar 

  24. Haraguchi, K., Katsuyama, T. & Hiruma, K. Polarization dependence of light emitted from GaAs p-n junctions in quantum wire crystals. J. Appl. Phys. 75, 4220–4225 (1994).

    ADS  Google Scholar 

  25. Borgström, M. T., Immink, G., Ketelaars, B., Algra, R. & Bakkers, E. P. A. M. Synergetic nanowire growth. Nature Nanotech. 2, 541–544 (2007).

    ADS  Google Scholar 

  26. Dick, K. A. et al. Failure of the vapor–liquid–solid mechanism in Au-assisted MOVPE growth of InAs nanowires. Nano Lett. 5, 761–764 (2005).

    ADS  Google Scholar 

  27. Mårtensson, T. et al. Nanowire arrays defined by nanoimprint lithography. Nano Lett. 4, 699–702 (2004).

    ADS  Google Scholar 

  28. Ertekin, E., Greaney, P. A., Chrzan, D. C. & Sands, T. D. Equilibrium limits of coherency in strained nanowire heterostructures. J. Appl. Phys. 97, 114325 (2005).

    ADS  Google Scholar 

  29. Mårtensson, T. et al. Epitaxial IIIV nanowires on silicon. Nano Lett. 4, 1987–1990 (2004).

    ADS  Google Scholar 

  30. Tomioka, K., Motohisa, J., Hara, S. & Fukui, T. Control of InAs nanowire growth directions on Si. Nano Lett. 8, 3475–3480 (2008).

    ADS  Google Scholar 

  31. Bakkers, E. P. A. M. et al. Epitaxial growth of InP nanowires on germanium. Nature Mater. 3, 769–773 (2004).

    ADS  Google Scholar 

  32. Svensson, C. P. T. et al. Monolithic GaAs/InGaP nanowire light emitting diodes on silicon. Nanotechnology 19, 305201 (2008).

    ADS  Google Scholar 

  33. Mandl, B. et al. Au-free epitaxial growth of InAs nanowires. Nano Lett. 6, 1817–1821 (2006).

    ADS  Google Scholar 

  34. Ikejiri, K., Noborisaka, J., Hara, S., Motohisa, J. & Fukui, T. Mechanism of catalyst-free growth of GaAs nanowires by selective area MOVPE. J. Cryst. Growth 298, 616–619 (2007).

    ADS  Google Scholar 

  35. Mohan, P., Motohisa, J. & Fukui, T. Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays. Nanotechnology 16, 2903–2907 (2005).

    ADS  Google Scholar 

  36. Mohan, P., Motohisa, J. & Fukui, T. Fabrication of InP/InAs/InP core–multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy. Appl. Phys. Lett. 88, 133105 (2006).

    ADS  Google Scholar 

  37. Choi, H-J. et al. Self-organized GaN quantum wire UV lasers. J. Phys. Chem. B 107, 8721–8725 (2003).

    Google Scholar 

  38. Qian, F. et al. Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 4, 1975–1979 (2004).

    ADS  Google Scholar 

  39. Qian, F. et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature Mater. 7, 701–706 (2008).

    ADS  Google Scholar 

  40. Lauhon, L. J., Gudiksen, M. S., Wang, D. & Lieber, C. M. Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420, 57–61 (2002).

    ADS  Google Scholar 

  41. Algra, R. E. et al. Twinning superlattices in indium phosphide nanowires. Nature 456, 369–372 (2008).

    ADS  Google Scholar 

  42. Wu, Y., Fan, R. & Yang, P. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett. 2, 83–86 (2002).

    ADS  Google Scholar 

  43. Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C. & Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2002).

    ADS  Google Scholar 

  44. Björk, M. T. et al. One-dimensional steeplechase for electrons realized. Nano Lett. 2, 87–89 (2002).

    ADS  Google Scholar 

  45. Li, Y., Qian, F., Xiang, J. & Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today 9, 18–27 (2006).

    Google Scholar 

  46. Dick, K. A. et al. Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events. Nature Mater. 3, 380–384 (2004).

    ADS  Google Scholar 

  47. Bierman, M. J., Lau, Y. K. A., Kvit, A. V., Schmitt, A. L. & Jin, S. Dislocation-driven nanowire growth and Eshelby twist. Science 320, 1060–1063 (2008).

    ADS  Google Scholar 

  48. Zhu, J. et al. Formation of chiral branched nanowires by the Eshelby Twist. Nature Nanotech. 3, 477–481 (2008).

    ADS  Google Scholar 

  49. Smith, P. A. et al. Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77, 1399–1401 (2000).

    ADS  Google Scholar 

  50. Huang, Y., Duan, X., Wei, Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001).

    ADS  Google Scholar 

  51. Messer, B., Song, J. H. & Yang, P. Microchannel networks for nanowire patterning. J. Am. Chem. Soc. 122, 10232–10233 (2000).

    Google Scholar 

  52. Yang, P. Nanotechnology: Wires on water. Nature 425, 243–244 (2003).

    ADS  Google Scholar 

  53. Tao, A. R., Huang, J. & Yang, P. Langmuir–Blodgettry of nanocrystals and nanowires. Acc. Chem. Res. 41, 1662–1673 (2008).

    Google Scholar 

  54. Ahn, J-H. et al. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 314, 1754–1757 (2006).

    ADS  Google Scholar 

  55. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    ADS  Google Scholar 

  56. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    ADS  Google Scholar 

  57. Korda, P., Spalding, G. C., Dufresne, E. R. & Grier, D. G. Nanofabrication with holographic optical tweezers. Rev. Sci. Instrum. 73, 1956–1957 (2002).

    ADS  Google Scholar 

  58. Pauzauskie, P. J. et al. Optical trapping and integration of semiconductor nanowire assemblies in water. Nature Mater. 5, 97–101 (2006).

    ADS  Google Scholar 

  59. Agarwal, R. et al. Manipulation and assembly of nanowires with holographic optical traps. Opt. Express 13, 8906–8912 (2005).

    ADS  Google Scholar 

  60. Chiou, P. Y., Ohta, A. T. & Wu, M. C. Massively parallel manipulation of single cells and microparticles using optical images. Nature 436, 370–372 (2005).

    ADS  Google Scholar 

  61. Jamshidi, A. et al. Dynamic manipulation and separation of individual semiconducting and metallic nanowires. Nature Photon. 2, 86–89 (2008).

    ADS  Google Scholar 

  62. Yan, H. et al. Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 125, 4728–4729 (2003).

    Google Scholar 

  63. Sirbuly, D. J., Law, M., Yan, H. & Yang, P. Semiconductor nanowires for subwavelength photonics integration. J. Phys. Chem. B 109, 15190–15213 (2005).

    Google Scholar 

  64. Johnson, J. C., Yan, H., Yang, P. & Saykally, R. J. Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B 107, 8816–8828 (2003).

    Google Scholar 

  65. Zapien, J. A. et al. Room-temperature single nanoribbon lasers. Appl. Phys. Lett. 84, 1189–1191 (2004).

    ADS  Google Scholar 

  66. Duan, X., Huang, Y., Agarwal, R. & Lieber, C. M. Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003).

    ADS  Google Scholar 

  67. Johnson, J. C. et al. Single gallium nitride nanowire lasers. Nature Mater. 1, 106–110 (2002).

    ADS  Google Scholar 

  68. Chin, A. H. et al. Near-infrared semiconductor subwavelength-wire lasers. Appl. Phys. Lett. 88, 163115 (2006).

    ADS  Google Scholar 

  69. Pauzauskie, P. J., Sirbuly, D. J. & Yang, P. Semiconductor nanowire ring resonator laser. Phys. Rev. Lett. 96, 143903 (2006).

    ADS  Google Scholar 

  70. Zimmler, M. A., Bao, J., Capasso, F., Müller, S. & Ronning, C. Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation. Appl. Phys. Lett. 93, 051101 (2008).

    ADS  Google Scholar 

  71. Barrelet, C. J. et al. Hybrid single-nanowire photonic crystal and microresonator structures. Nano Lett. 6, 11–15 (2006).

    ADS  Google Scholar 

  72. Maslov, A. V. & Ning, C. Z. Far-field emission of a semiconductor nanowire laser. Opt. Lett. 29, 572–574 (2004).

    ADS  Google Scholar 

  73. van Vugt, L. K., Rühle, S. & Vanmaekelbergh, D. Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire. Nano Lett. 6, 2707–2711 (2006).

    ADS  Google Scholar 

  74. Hua, B., Motohisa, J., Kobayashi, Y., Hara, S. & Fukui, T. Single GaAs/GaAsP coaxial core–shell nanowire lasers. Nano Lett. 9, 112–116 (2009).

    ADS  Google Scholar 

  75. Sköld, N. et al. Growth and optical properties of strained GaAs-GaxIn1−xP core–shell nanowires. Nano Lett. 5, 1943–1947 (2005).

    ADS  Google Scholar 

  76. Hua, B., Motohisa, J., Ding, Y., Hara, S. & Fukui, T. Characterization of Fabry-Pérot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy. Appl. Phys. Lett. 91, 131112 (2007).

    ADS  Google Scholar 

  77. Duan, X., Huang, Y., Cui, Y., Wang, J. & Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001).

    ADS  Google Scholar 

  78. Huang, Y., Duan, X. & Lieber, C. M. Nanowires for integrated multicolor nanophotonics. Small 1, 142–147 (2005).

    Google Scholar 

  79. Zhong, Z., Qian, F., Wang, D. & Lieber, C. M. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3, 343–346 (2003).

    ADS  Google Scholar 

  80. Minot, E. D. et al. Single quantum dot nanowire LEDs. Nano Lett. 7, 367–371 (2007).

    ADS  Google Scholar 

  81. Law, M. et al. Nanoribbon waveguides for subwavelength photonics integration. Science 305, 1269–1273 (2004).

    ADS  Google Scholar 

  82. O'Brien, J. L., Pryfde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003).

    ADS  Google Scholar 

  83. Ibrahim, T. A. et al. All-optical switching in a laterally coupled microring resonator by carrier injection. IEEE Photon. Technol. Lett. 15, 36–38 (2003).

    ADS  Google Scholar 

  84. Tong, L. et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816–819 (2003).

    ADS  Google Scholar 

  85. Sirbuly, D. J. et al. Optical routing and sensing with nanowire assemblies. Proc. Natl Acad. Sci. USA 102, 7800–7805 (2005).

    ADS  Google Scholar 

  86. Nakayama, Y. et al. Tunable nanowire nonlinear optical probe. Nature 447, 1098–1101 (2007).

    ADS  Google Scholar 

  87. Kind, H., Yan, H., Messer, B., Law, M. & Yang, P. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 14, 158–160 (2002).

    Google Scholar 

  88. Wang, J., Gudiksen, M. S., Duan, X., Cui, Y. & Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001).

    ADS  Google Scholar 

  89. Gu, Y. et al. Near-field scanning photocurrent microscopy of a nanowire photodetector. Appl. Phys. Lett. 87, 043111 (2005).

    ADS  Google Scholar 

  90. Hayden, O., Agarwal, R. & Lieber, C. M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nature Mater. 5, 352–356 (2006).

    ADS  Google Scholar 

  91. Campbell, J. C. Recent advances in telecommunications avalanche photodiodes. J. Lightwave Technol. 25, 109–121 (2007).

    ADS  Google Scholar 

  92. Hayden, O. & Payne, C. K. Nanophotonic light sources for fluorescence spectroscopy and cellular imaging. Angew. Chem. Int. Ed. 44, 1395–1398 (2005).

    Google Scholar 

  93. O'Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    ADS  Google Scholar 

  94. Law, M., Greene, L. E., Johnson, J. C., Saykally, R. & Yang, P. Nanowire dye-sensitized solar cells. Nature Mater. 4, 455–459 (2005).

    ADS  Google Scholar 

  95. Law, M. et al. ZnO-Al2O3 and ZnO-TiO2 core–shell nanowire dye-sensitized solar cells. J. Phys. Chem. B 110, 22652–22663 (2006).

    Google Scholar 

  96. Tian, B. et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007).

    ADS  Google Scholar 

  97. Murashov, V. & Howard, J. The US must help set international standards for nanotechnology. Nature Nanotech. 3, 635–636 (2008).

    ADS  Google Scholar 

  98. Maslov, A. V. & Ning, C. Z. Size reduction of a semiconductor nanowire laser by using metal coating. Proc. SPIE 6468, 64680I (2007).

    ADS  Google Scholar 

  99. Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007).

    ADS  Google Scholar 

  100. Oulton, R. F., Sorger, V. J., Genov, D. A., Pile, D. F. P. & Zhang, X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photon. 2, 496–500 (2008).

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge here contributions of members of our research group and collaborators on this nanowire photonics programme. This work was supported by the Office of Basic Science, US Department of Energy and the Defense Advanced Research Projects Agency. P.Y. would like to thank the National Science Foundation for the A.T. Waterman Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peidong Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, R., Gargas, D. & Yang, P. Nanowire photonics. Nature Photon 3, 569–576 (2009). https://doi.org/10.1038/nphoton.2009.184

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.184

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing