Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Excitonic switches operating at around 100 K

Abstract

Photonic and optoelectronic devices may offer the opportunity to realize efficient signal processing at speeds higher than in conventional electronic devices. Switches form the building blocks for circuits, and fast photonic switches have been realized1,2,3,4,5,6. Recently, a proof of principle demonstration of exciton optoelectronic devices was reported7,8. The potential advantages of excitonic devices include high operation and interconnection speed, small dimensions and the opportunity to combine many elements into integrated circuits. Here, we demonstrate experimental proof of principle for the operation of excitonic switching devices at temperatures around 100 K. The devices are based on an AlAs/GaAs coupled quantum well structure and include the exciton optoelectronic transistor (EXOT), the excitonic bridge modulator (EXBM), and the excitonic pinch-off modulator (EXPOM). A two orders of magnitude increase in the operation temperature compared to earlier devices (1.5 K; refs 7,8) is achieved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Indirect excitons in electrostatic channels and anti-channels.
Figure 2: Transport length of indirect excitons in the AlAs/GaAs CQW.
Figure 3: EXOT operation at 85 K.
Figure 4: EXBM operation at 125 K.
Figure 5: EXPOM operation at 85 K.

Similar content being viewed by others

References

  1. Liu, A. et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature 427, 615–618 (2004).

    Article  ADS  Google Scholar 

  2. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

    Article  ADS  Google Scholar 

  3. Jiang, Y., Jiang, W., Gu, L., Chen, X. & Chen, R. T. 80-micron interaction length silicon photonic crystal waveguide modulator. Appl. Phys. Lett. 87, 221105 (2005).

    Article  ADS  Google Scholar 

  4. Green, W. M. J., Rooks, M. J., Seekaric, L. & Vlasov Y.A. Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator. Opt. Express 15, 17106–17113 (2007).

    Article  ADS  Google Scholar 

  5. Liu, J. et al. Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nature Photon. 2, 433–437 (2008).

    Article  ADS  Google Scholar 

  6. Chen, H. W., Kuo, Y. H. & Bowers, J. E. High speed hybrid silicon evanescent Mach–Zehnder modulator and switch. Opt. Express 16, 20571–20576 (2008).

    Article  ADS  Google Scholar 

  7. High, A. A., Hammack, A. T., Butov, L. V., Hanson, M. & Gossard, A. C. Exciton optoelectronic transistor. Opt. Lett. 32, 2466–2468 (2007).

    Article  ADS  Google Scholar 

  8. High, A. A., Novitskaya, E. E., Butov, L. V., Hanson, M. & Gossard, A.C. Control of exciton fluxes in an excitonic integrated circuit. Science 321, 229–231 (2008).

    Article  ADS  Google Scholar 

  9. Miller, D. A. B. Rationale and challenges for optical interconnects to electronic chips. IEEE 88, 728–749 (2000)

    Article  Google Scholar 

  10. Wakita, K. Semiconductor Optical Modulators (Kluwer Academic Publishers, 1998).

    Book  Google Scholar 

  11. Hagn, M., Zrenner, A., Böhm, G. & Weimann, G. Electric-field-induced exciton transport in coupled quantum well structures. Appl. Phys. Lett. 67, 232–234 (1995).

    Article  ADS  Google Scholar 

  12. Butov, L. V. & Filin, A. I. Anomalous transport and luminescence of indirect excitons in AlAs/GaAs coupled quantum wells as evidence for exciton condensation. Phys. Rev. B 58, 1980–2000 (1998).

    Article  ADS  Google Scholar 

  13. Larionov, A. V., Timofeev, V. B., Hvam, J. & Soerensen, K. Interwell excitons in GaAs/AlGaAs double quantum wells and their collective properties. Sov. Phys. JETP 90, 1093–1104 (2000).

    Article  ADS  Google Scholar 

  14. Butov, L. V., Gossard, A. C. & Chemla, D. S. Macroscopically ordered state in an exciton system. Nature 418, 751–754 (2002).

    Article  ADS  Google Scholar 

  15. Vörös, Z., Balili, R., Snoke, D. W., Pfeiffer, L. & West, K. Long-distance diffusion of excitons in double quantum well structures. Phys. Rev. Lett. 94, 226401 (2005).

    Article  ADS  Google Scholar 

  16. Gartner, A., Holleithner, A. W., Kotthaus, J. P. & Schul, D. Drift mobility of long-living excitons in coupled GaAs quantum wells. Appl. Phys. Lett. 89, 052108 (2006).

    Article  ADS  Google Scholar 

  17. Ivanov, A. L., Smallwood, L. E., Hammack, A. T., Sen Yang, Butov, L. V. & Gossard, A. C. Origin of the inner ring in photoluminescence patterns of quantum well excitons. Europhys. Lett. 73, 920–926 (2006).

    Article  ADS  Google Scholar 

  18. Chemla, D. S., Miller, D. A. B., Smith, P. W., Gossard, A. C. & Wiegmann, W. Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures. IEEE J. Quantum Electron. 20, 265–275 (1984).

    Article  ADS  Google Scholar 

  19. Makino, T., Segawa, Y., Kawasaki, M. & Koinuma, H. Optical properties of excitons in ZnO-based quantum well heterostructures. Semicond. Sci. Technol. 20, S78–S91 (2005).

    Article  ADS  Google Scholar 

  20. Segal, M., Singh, M., Rivoire, K., Difley, S., Van Voorhis, T. & Baldo, M. A. Extrafluorescent electroluminescence in organic light-emitting devices. Nature Mater. 6, 374–378 (2007).

    Article  ADS  Google Scholar 

  21. Zrenner, A. Festkörperprobleme/Advances in Solid State Physics. Vol. 32, p. 61 (Vieweg, Braunschweig, 1992).

    Google Scholar 

  22. Miller, D. A. B. et al. Electric field dependence of optical absorption near the band gap of quantum-well structures. Phys. Rev. B 32, 1043–1060 (1985).

    Article  ADS  Google Scholar 

  23. Remeika, M. et al. Localization–delocalization transition of indirect excitons in lateral electrostatic lattices. Phys. Rev. Lett. 102, 186803 (2009).

    Article  ADS  Google Scholar 

  24. Butov, L. V., Zrenner, A., Abstreiter, G., Böhm, G. & Weimann, G. Condensation of indirect excitons in coupled AlAs/GaAs quantum wells. Phys. Rev. Lett. 73, 304–307 (1994).

    Article  ADS  Google Scholar 

  25. Hammack, A. T. et al. Excitons in electrostatic traps. J. Appl. Phys. 99, 066104 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by ARO and NSF.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the work presented in this paper.

Corresponding author

Correspondence to A. A. High.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grosso, G., Graves, J., Hammack, A. et al. Excitonic switches operating at around 100 K. Nature Photon 3, 577–580 (2009). https://doi.org/10.1038/nphoton.2009.166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing