Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Radiative heat transfer at the nanoscale


Heat can be exchanged between two surfaces through emission and absorption of thermal radiation. It has been predicted theoretically that for distances smaller than the peak wavelength of the blackbody spectrum, radiative heat transfer can be increased by the contribution of evanescent waves1,2,3,4,5,6,7,8. This contribution can be viewed as energy tunnelling through the gap between the surfaces. Although these effects have already been observed9,10,11,12,13,14, a detailed quantitative comparison between theory and experiments in the nanometre regime is still lacking. Here, we report an experimental setup that allows measurement of conductance for gaps varying between 30 nm and 2.5 µm. Our measurements pave the way for the design of submicrometre nanoscale heaters that could be used for heat-assisted magnetic recording or heat-assisted lithography.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup.
Figure 2: The Derjaguin approximation.
Figure 3: Thermal conductance between the sphere with diameter 40 µm and the plate as a function of gap distance.
Figure 4: Thermal conductance between the sphere and the plate as a function of the gap for two sphere diameters (40 and 22 µm).


  1. Polder, D. & Van Hove, M. Theory of radiative heat transfer between closely spaced bodies. Phys. Rev. B 4, 3303–3314 (1971).

    Article  ADS  Google Scholar 

  2. Rytov, S. M., Kratsov, Yu. A. & Tatarskii, V. I. Principles of Statistical Radiophysics 3, Ch. 3 (Springer-Verlag, 1987).

    Book  Google Scholar 

  3. Loomis J. J. & Maris, H. J. Theory of heat transfer by evanescent electromagnetic waves. Phys. Rev. B 50, 18517–18524 (1994).

    Article  ADS  Google Scholar 

  4. Pendry, J. B. Radiative exchange of heat between nanostructures. J. Phys.: Condens. Matter 11, 6621–6633 (1999).

    ADS  Google Scholar 

  5. Volokitin, A. I. & Persson, B. N. J. Near-field radiative heat transfer and noncontact friction. Rev. Mod. Phys. 79, 1291–1329 (2007).

    Article  ADS  Google Scholar 

  6. Dorofeyev, I. A. Rate of energy dissipation of the thermal fluctuation field of the sample at the tip of a tunneling microscope. Tech. Phys. Lett. 23, 109–111 (1997).

    Article  ADS  Google Scholar 

  7. Joulain, K., Mulet, J.-P., Marquier, F., Carminati, R. & Greffet, J.-J. Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf. Sci. Rep. 57, 59–112 (2005).

    Article  ADS  Google Scholar 

  8. Biehs, S. A. Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials. Eur. Phys. J. B 58, 423–431 (2007).

    Article  ADS  Google Scholar 

  9. Hargreaves, C. M. Anomalous radiative transfer between closely-spaced bodies. Phys. Lett. A 30, 491–492 (1969).

    Article  ADS  Google Scholar 

  10. Kittel, A. et al. Near-field heat transfer in a scanning thermal microscope. Phys. Rev. Lett. 95, 224301 (2005).

    Article  ADS  Google Scholar 

  11. Wischnath, U. F., Welker, J., Munzel, M. & Kittel, A. The near-field scanning thermal microscope. Rev. Sci. Instrum. 79, 073708 (2008).

    Article  ADS  Google Scholar 

  12. DiMatteo, R. S. et al. Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap. Appl. Phys. Lett. 79, 1894–1896 (2001).

    Article  ADS  Google Scholar 

  13. Narayanaswamy, A. & Chen, G. Near-field radiative heat transfer between a sphere and a substrate. Phys. Rev. B 78, 115303 (2008).

    Article  ADS  Google Scholar 

  14. Shen, S., Narayanaswamy, A. & Chen, G. Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett. doi: 10.1021/nl901208v (2009).

  15. Domoto, G. A., Boehm, R. F. & Tien, C. L. Experimental investigation of radiative transfer between metallic surfaces at cryogenic temperatures. J. Heat Transfer 92, 412 (1970).

    Article  Google Scholar 

  16. Lifshitz, E. M. The theory of molecular attractive forces between solids. Zh. Eksp. Teor. Fiz. 29, 94–110 (1955) [Sov. Phys. JETP 2, 73 (1956)].

    Google Scholar 

  17. Jourdan, G., Lambrecht, A., Comin, F. & Chevrier, J. Quantitative non-contact dynamic Casimir force measurements. J. Eur. Phys. Lett. 85, 31001 (2009).

    Article  ADS  Google Scholar 

  18. Mohideen, U. & Roy, A. Precision measurement of the Casimir force from 0.1 to 0.9 µm. Phys. Rev. Lett. 81, 4549–4552 (1998).

    Article  ADS  Google Scholar 

  19. Lamoreaux, S. K. Demonstration of the Casimir force in the 0.6 to 6 µm range. Phys. Rev. Lett. 78, 5–8 (1997).

    Article  ADS  Google Scholar 

  20. Xu, J. B., Luger, K., Moller, R., Dransfeld, K. & Wilson, I. H. Heat transfer between two metallic surfaces at small distances. J. Appl. Phys. 76, 7209–7216 (1994).

    Article  ADS  Google Scholar 

  21. Mulet, J. P., Joulain, K., Carminati, R. & Greffet, J. J. Enhanced radiative heat transfer at nanometric distances. Microscale Thermophys. Eng. 6, 209–222 (2002).

    Article  Google Scholar 

  22. Derjaguin, B. V., Abrikosova, I. I. & Lifshitz, E. M. Direct measurement of molecular attraction between solids separated by a narrow gap. Quart. Rev. Chem. Soc. 10, 295–329 (1956).

    Article  Google Scholar 

  23. Narayanaswamy, A. & Chen, G. Thermal near-field radiative transfer between two spheres. Phys. Rev. B 77, 075125 (2008).

    Article  ADS  Google Scholar 

  24. Jourdan, G. Vers un microscope de force de Casimir. PhD thesis, Université Joseph Fourier (2007).

  25. Lai, J., Perazzo, T., Shi, Z. & Majumdar, A. Optimization and performance of high-resolution micro-optomechanical thermal sensors. Sens. Actuat A 58, 113–119 (1997).

    Article  Google Scholar 

  26. Barnes, J. R. et al. A femtojoule calorimeter using micromechanical sensors. Rev. Sci. Instrum. 65, 3793–3796 (1994); Erratum: Rev. Sci. Instrum. 66, 3083 (1994).

    Article  ADS  Google Scholar 

  27. Palik, E. D. Handbook of Optical Constants of Solids Vol. 1, 749 (Academic Press, 1985).

  28. Henkel, C., Joulain, K., Carminati, R. & Greffet, J. J. Spatial coherence of thermal near fields. Opt. Commun. 186, 57–67 (2000).

    Article  ADS  Google Scholar 

  29. Challener, W. A. et al. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nature Photon. 3, 220–224 (2009).

    Article  ADS  Google Scholar 

  30. Mulet, J. P., Joulain, K., Carminati, R. & Greffet, J. J. Nanoscale radiative heat transfer between a small particle and a plane surface. Appl. Phys. Lett. 78, 2931–2933 (2001).

    Article  ADS  Google Scholar 

  31. Chapuis, P. O., Volz, S., Henkel, C., Joulain, K. & Greffet, J. J. Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces. Phys. Rev. B 77, 035431 (2008).

    Article  ADS  Google Scholar 

Download references


The authors acknowledge the support of Agence Nationale de la Recherche through Monaco projects and Léti-Carnot Institute. J.-J.G. and E.R. thank P.O. Chapuis for fruitful discussions. J.C. and A.S. thank S. Huant for support and fruitful discussions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jean-Jacques Greffet.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rousseau, E., Siria, A., Jourdan, G. et al. Radiative heat transfer at the nanoscale. Nature Photon 3, 514–517 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing