Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal


Many creatures in nature, such as butterflies and peacocks, display unique brilliant colours, known as ‘structural colours’, which result from the interaction of light with periodic nanostructures on their surfaces. Mimicking such nanostructures found in nature, however, requires state-of-the-art nanofabrication techniques that are slow, expensive and not scalable. Herein, we demonstrate high-resolution patterning of multiple structural colours within seconds, based on successive tuning and fixing of colour using a single material along with a maskless lithography system. We have invented a material called ‘M-Ink’, the colour of which is tunable by magnetically changing the periodicity of the nanostructure and fixable by photochemically immobilizing those structures in a polymer network. We also demonstrate a flexible photonic crystal for the realization of structural colour printing. The simple, controllable and scalable structural colour printing scheme presented may have a significant impact on colour production for general consumer goods.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic of the production of high-resolution multiple structural colours with a single material.
Figure 2: Generation of high-resolution multiple structural colour patterns using M-Ink.
Figure 3: Reflection intensity modulation and spatial colour mixing of structural colour.
Figure 4: Flexible photonic crystal thin film and optical properties of the structural colour.


  1. 1

    Srinivasarao, M. Nano-optics in the biological world: beetles, butterflies, birds and moths. Chem. Rev. 99, 1935–1961 (1999).

    Article  Google Scholar 

  2. 2

    Vukusic, P., Sambles, J. R. & Lawrence, C. R. Colour mixing in wing scales of a butterfly. Nature 404, 457 (2000).

    ADS  Article  Google Scholar 

  3. 3

    Parker, A. R., McPhedran, R. C., Mckenzie, D. R., Botten, L. C. & Nicorovici, N. P. Aphrodite's iridescence. Nature 409, 36–37 (2001).

    ADS  Article  Google Scholar 

  4. 4

    Kinoshita, S., Yoshioka, S. & Kawagoe, K. Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale. Proc. R. Soc. B 269, 1417–1421 (2002).

    Article  Google Scholar 

  5. 5

    Zi, J. et al. Coloration strategies in peacock feathers. Proc. Natl Acad. Sci. USA 100, 12576–12578 (2003).

    ADS  Article  Google Scholar 

  6. 6

    Potyrailo, R. A. et al. Morpho butterfly wing scales demonstrate highly selective vapour response. Nature Photon. 1, 123–128 (2007).

    ADS  Article  Google Scholar 

  7. 7

    Braun, P. V. et al. Epitaxial growth of high dielectric contrast three-dimensional photonic crystals. Adv. Mater. 13, 721–724 (2001).

    ADS  Article  Google Scholar 

  8. 8

    Lee, S., Yi, G. & Yang, S. High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips. Lab. Chip 6, 1171–1177 (2006).

    Article  Google Scholar 

  9. 9

    Lu, Y., Yin, Y., Gates, B. & Xia, Y. Growth of large crystals of monodispersed spherical colloids in fluidic cells fabricated using non-photolithographic methods. Langmuir 17, 6344–6350 (2001).

    Article  Google Scholar 

  10. 10

    Holgado, M. et al. Electrophoretic deposition to control artificial opal growth. Langmuir 15, 4701–4704 (1999).

    Article  Google Scholar 

  11. 11

    Jiang, P., Bertone, J. F., Hwang, K. S. & Colvin, V. L. Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11, 2132–2140 (1999).

    Article  Google Scholar 

  12. 12

    Velev, O. D., Lenhoff, A. M. & Kaler, E. W. A class of microstructured particles through colloidal crystallization. Science 287, 2240–2243 (2000).

    ADS  Article  Google Scholar 

  13. 13

    Vlasov, Y. A., Bo, X., Sturm, J. C. & Norris, D. J. On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289–293 (2001).

    ADS  Article  Google Scholar 

  14. 14

    Gu, Z., Fujishima, A. & Sato, O. Fabrication of high-quality opal films with controllable thickness. Chem. Mater. 14, 760–765 (2002).

    Article  Google Scholar 

  15. 15

    Fudouzi, H. & Xia, Y. Colloidal crystals with tunable colors and their use as photonic papers. Langmuir 19, 9653–9660 (2003).

    Article  Google Scholar 

  16. 16

    Prevo, B. G. & Velev, O. D. Controlled, rapid deposition of structured coatings from micro- and nanoparticle suspensions. Langmuir 20, 2099–2107 (2004).

    Article  Google Scholar 

  17. 17

    Masuda, Y., Itoh, T., Itoh, M. & Koumoto, K. Self-assembly patterning of colloidal crystals constructed from opal structure or NaCl structure. Langmuir 20, 5588–5592 (2004).

    Article  Google Scholar 

  18. 18

    Wang, J. et al. Simple fabrication of full color colloidal crystal films with tough mechanical strength. Macromol. Chem. Phys. 207, 596–604 (2006).

    ADS  Article  Google Scholar 

  19. 19

    Arsenault, A. C. et al. From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nature Mater. 5, 179–184 (2006).

    ADS  Article  Google Scholar 

  20. 20

    Arsenault A. C. et al. Photonic-crystal full-colour displays. Nature Photon. 1, 468–472 (2007).

    ADS  Article  Google Scholar 

  21. 21

    Huang, J., Wang, X. & Wang, Z. L. Controlled replication of butterfly wings for achieving tunable photonic properties. Nano Lett. 6, 2325–2331 (2006).

    ADS  Article  Google Scholar 

  22. 22

    Saito, A., Yoshioka, S. & Kinoshita, S. Reproduction of the Morpho butterfly's blue: arbitration of contradicting factors. Proc. SPIE 5526, 188–194 (2004).

    ADS  Article  Google Scholar 

  23. 23

    Wong, T., Gupta, M. C., Robins, B. & Levendusky, T. L. Color generation in butterfly wings and fabrication of such structures. Opt. Lett. 28, 2342–2344 (2003).

    ADS  Article  Google Scholar 

  24. 24

    Watanabe, K. et al. Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition. J. Vac. Sci. Technol. B 23, 570–574 (2005).

    Article  Google Scholar 

  25. 25

    Ge, J., Hu, Y. & Yin, Y. Highly tunable superparamagnetic colloidal photonic crystals. Angew Chem. Int. Ed. 46, 7428–7431 (2007).

    Article  Google Scholar 

  26. 26

    Ge, J. & Yin, Y. Magnetically tunable colloidal photonic structures in alkanol solutions. Adv. Mater. 20, 3485–3491 (2008).

    Article  Google Scholar 

  27. 27

    Furst, E. M. & Gast, A. P. Dynamics and lateral interactions of dipolar chains. Phys. Rev. E 62, 6916–6925 (2000).

    ADS  Article  Google Scholar 

  28. 28

    Martin, J. E., Hill, K. M. & Tigges, C. P. Magnetic-field-induced optical transmittance in colloidal suspensions. Phys. Rev. E 59, 5676–5692 (1999).

    ADS  Article  Google Scholar 

  29. 29

    Raghavan, S. R., Walls, H. J. & Khan, S. A. Rheology of silica dispersions in organic liquids: new evidence for solvation forces dictated by hydrogen bonding. Langmuir 16, 7920–7930 (2000).

    Article  Google Scholar 

  30. 30

    Kobayashi, M., Juillerat, F., Galletto, P., Bowen, P. & Borkovec, M. Aggregation and charging of colloidal silica particles: effect of particle size. Langmuir 21, 5761–5769 (2005).

    Article  Google Scholar 

  31. 31

    Dickstein, A. J., Erramilli, S., Goldstein, R. E., Jackson, D. P. & Langer, S. A. Labyrinthine pattern formation in magnetic fluids. Science 261, 1012–1015 (1993).

    ADS  Article  Google Scholar 

  32. 32

    Panda, P. et al. Stop-flow lithography to generate cell-laden microgel particles. Lab. Chip 8, 1056–1061 (2008).

    Article  Google Scholar 

  33. 33

    Chung, S. E. et al. Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels. Appl. Phys. Lett. 91, 041106 (2007).

    ADS  Article  Google Scholar 

  34. 34

    Chung, S. E., Park, W., Shin, S., Lee, S. A. & Kwon, S. Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nature Mater. 7, 581–587 (2008).

    ADS  Article  Google Scholar 

  35. 35

    Ito, T. & Okazaki, S. Pushing the limits of lithography. Nature 406, 1027–1031 (2000).

    Article  Google Scholar 

  36. 36

    Bayer, B. E. An optimum method for two-level rendition of continuous-tone pictures. Proc. IEEE Int. Conf. Commun. 1, 26-11–26-15 (1973).

    Google Scholar 

  37. 37

    Ulichney, R. Digital Halftoning (MIT Press, 1987).

    Google Scholar 

Download references


This work was partly supported by the System IC 2010 project of the Ministry of Knowledge Economy and the Nano Systems Institute National Core Research Center (NSI-NCRC) programme of KOSEF. We thank S.E. Chung and N.R. Kim of the School of Electrical Engineering and Computer Science, SNU, for experimental advice. Y.Y. thanks the University of California, Riverside for provision of startup support, and also the Donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

Author information




H.K., Y.Y. and S.K. designed the experiment. H.K., J.G., J.K., S.-e.C., Hosuk L., Howon L. and W.P. performed the experiments and analysis.

Corresponding author

Correspondence to Sunghoon Kwon.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, H., Ge, J., Kim, J. et al. Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nature Photon 3, 534–540 (2009).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing