Abstract
Although invented for precision measurements of single atomic transitions, frequency combs have also become a versatile tool for broadband spectroscopy in recent years. Here, we present a novel and simple approach for broadband spectroscopy, combining the accuracy of an optical fibre-laser-based frequency comb with the ease of use of a tunable external cavity diode laser. The scheme enables broadband and fast spectroscopy of more than 4 THz bandwidth at scanning speeds up to 1 THz s−1 at sub-MHz resolution. We use this method for spectroscopy of microresonator modes and precise measurements of their dispersion, which is relevant in the context of broadband optical frequency comb generation, having recently been demonstrated in these devices. Moreover, we find excellent agreement between measured microresonator dispersion with predicted values from finite element simulations, and we show that microresonator dispersion can be tailored by adjusting their geometrical properties.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
High-quality microresonators in the longwave infrared based on native germanium
Nature Communications Open Access 06 October 2022
-
Frequency comb-to-comb stabilization over a 1.3-km free-space atmospheric optical link
Light: Science & Applications Open Access 12 August 2022
-
Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits
Communications Physics Open Access 07 April 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).
Cundiff, S. T. & Ye, J. Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003).
Ye, J. & Cundiff, S. T. Femtosecond Optical Frequency Comb Technology: Principle, Operation and Application (Springer, 2005).
Diddams, S. A., Hollberg, L. & Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007).
Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).
Schliesser, A., Brehm, M., Keilmann, F. & van der Weide, D. W. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt. Express 13, 9029–9038 (2005).
Coddington, I., Swann, W. C. & Newbury, N. R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 013902 (2008).
Mandon, J., Guelachvili, G. & Picque, N. Fourier transform spectroscopy with a laser frequency comb. Nature Photon. 3, 99–102 (2009).
Cundiff, S. T., Ye, J. & Hall, J. L. Optical frequency synthesis based on mode-locked lasers. Rev. Sci. Instrum. 72, 3749–3771 (2001).
Schibli, T. R. et al. Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb. Opt. Lett. 30, 2323–2325 (2005).
Jost, J. D., Hall, J. L. & Ye, J. Continuously tunable, precise, single frequency optical signal generator. Opt. Express 10, 515–520 (2002).
Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).
Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).
Del'Haye, P., Arcizet, O., Schliesser, A., Holzwarth, R. & Kippenberg, T. J. Full stabilization of a microresonator-based optical frequency comb. Phys. Rev. Lett. 101, 053903 (2008).
Savchenkov, A. A. et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett. 101, 093902 (2008).
Telle, H. R. et al. Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327–332 (1999).
Savchenkov, A. A., Rubiola, E., Matsko, A. B., Ilchenko, V. S. & Maleki, L. Phase noise of whispering gallery photonic hyper-parametric microwave oscillators. Opt. Express 16, 4130–4144 (2008).
Thorpe, M. J., Jones, R. J., Moll, K. D., Ye, J. & Lalezari, R. Precise measurements of optical cavity dispersion and mirror coating properties via femtosecond combs. Opt. Express 13, 882–888 (2005).
Schliesser, A., Gohle, C., Udem, T. & Hansch, T. W. Complete characterization of a broadband high-finesse cavity using an optical frequency comb. Opt. Express 14, 5975–5983 (2006).
Carmon, T. et al. Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities. Phys. Rev. Lett. 100, 103905 (2008).
Mollenauer, L. F., Stolen, R. H. & Gordon, J. P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980).
Oxborrow, M. Traceable 2-d finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators. IEEE Trans. Microw. Theory Tech. 55, 1209–1218 (2007).
Agha, I. H., Okawachi, Y., Foster, M. A., Sharping, J. E. & Gaeta, A. L. Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres. Phys. Rev. A 76, 043837 (2007).
Gorodetsky, M. L. & Fomin, A. E. Geometrical theory of whispering-gallery modes. IEEE J. Sel. Top. Quantum Electron. 12, 33–39 (2006).
Gorodetsky, M. L. & Fomin, A. E. Eigenfrequencies and Q factor in the geometrical theory of whispering-gallery modes. Quantum Electron. 37, 167–172 (2007).
Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).
Acknowledgements
The authors thank M. Oxborrow for providing templates for FEM simulation of whispering gallery modes in toroidal microresonators. T.J.K. acknowledges support from an Independent Max Planck Junior Research Group. This work was funded as part of a Marie Curie Excellence Grant (RG-UHQ) and the DFG funded Nanosystems Initiative Munich (NIM). We acknowledge the Max Planck Institute of Quantum Optics and P. Gruss for continued support. M.L.G. acknowledges support from the Alexander von Humboldt Foundation. O.A. was supported by a Marie Curie Intra European Action (QUOM).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Del'Haye, P., Arcizet, O., Gorodetsky, M. et al. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nature Photon 3, 529–533 (2009). https://doi.org/10.1038/nphoton.2009.138
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2009.138
This article is cited by
-
Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits
Communications Physics (2022)
-
A photonic integrated continuous-travelling-wave parametric amplifier
Nature (2022)
-
Platicon microcomb generation using laser self-injection locking
Nature Communications (2022)
-
High-quality microresonators in the longwave infrared based on native germanium
Nature Communications (2022)
-
Frequency comb-to-comb stabilization over a 1.3-km free-space atmospheric optical link
Light: Science & Applications (2022)