Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion


Although invented for precision measurements of single atomic transitions, frequency combs have also become a versatile tool for broadband spectroscopy in recent years. Here, we present a novel and simple approach for broadband spectroscopy, combining the accuracy of an optical fibre-laser-based frequency comb with the ease of use of a tunable external cavity diode laser. The scheme enables broadband and fast spectroscopy of more than 4 THz bandwidth at scanning speeds up to 1 THz s−1 at sub-MHz resolution. We use this method for spectroscopy of microresonator modes and precise measurements of their dispersion, which is relevant in the context of broadband optical frequency comb generation, having recently been demonstrated in these devices. Moreover, we find excellent agreement between measured microresonator dispersion with predicted values from finite element simulations, and we show that microresonator dispersion can be tailored by adjusting their geometrical properties.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measurement scheme.
Figure 2: Frequency comb calibrated transmission spectrum.
Figure 3: Microcavity mode spectrum and dispersion.
Figure 4: Geometric dispersion of a microresonator.
Figure 5: Dispersion of a microresonator.


  1. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  2. Cundiff, S. T. & Ye, J. Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003).

    Article  ADS  Google Scholar 

  3. Ye, J. & Cundiff, S. T. Femtosecond Optical Frequency Comb Technology: Principle, Operation and Application (Springer, 2005).

    Book  Google Scholar 

  4. Diddams, S. A., Hollberg, L. & Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007).

    Article  Google Scholar 

  5. Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).

    Article  ADS  Google Scholar 

  6. Schliesser, A., Brehm, M., Keilmann, F. & van der Weide, D. W. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt. Express 13, 9029–9038 (2005).

    Article  ADS  Google Scholar 

  7. Coddington, I., Swann, W. C. & Newbury, N. R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 013902 (2008).

    Article  ADS  Google Scholar 

  8. Mandon, J., Guelachvili, G. & Picque, N. Fourier transform spectroscopy with a laser frequency comb. Nature Photon. 3, 99–102 (2009).

    Article  ADS  Google Scholar 

  9. Cundiff, S. T., Ye, J. & Hall, J. L. Optical frequency synthesis based on mode-locked lasers. Rev. Sci. Instrum. 72, 3749–3771 (2001).

    Article  ADS  Google Scholar 

  10. Schibli, T. R. et al. Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb. Opt. Lett. 30, 2323–2325 (2005).

    Article  ADS  Google Scholar 

  11. Jost, J. D., Hall, J. L. & Ye, J. Continuously tunable, precise, single frequency optical signal generator. Opt. Express 10, 515–520 (2002).

    Article  ADS  Google Scholar 

  12. Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    Article  ADS  Google Scholar 

  13. Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  ADS  Google Scholar 

  14. Del'Haye, P., Arcizet, O., Schliesser, A., Holzwarth, R. & Kippenberg, T. J. Full stabilization of a microresonator-based optical frequency comb. Phys. Rev. Lett. 101, 053903 (2008).

    Article  ADS  Google Scholar 

  15. Savchenkov, A. A. et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett. 101, 093902 (2008).

    Article  ADS  Google Scholar 

  16. Telle, H. R. et al. Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327–332 (1999).

    Article  ADS  Google Scholar 

  17. Savchenkov, A. A., Rubiola, E., Matsko, A. B., Ilchenko, V. S. & Maleki, L. Phase noise of whispering gallery photonic hyper-parametric microwave oscillators. Opt. Express 16, 4130–4144 (2008).

    Article  ADS  Google Scholar 

  18. Thorpe, M. J., Jones, R. J., Moll, K. D., Ye, J. & Lalezari, R. Precise measurements of optical cavity dispersion and mirror coating properties via femtosecond combs. Opt. Express 13, 882–888 (2005).

    Article  ADS  Google Scholar 

  19. Schliesser, A., Gohle, C., Udem, T. & Hansch, T. W. Complete characterization of a broadband high-finesse cavity using an optical frequency comb. Opt. Express 14, 5975–5983 (2006).

    Article  ADS  Google Scholar 

  20. Carmon, T. et al. Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities. Phys. Rev. Lett. 100, 103905 (2008).

    Article  ADS  Google Scholar 

  21. Mollenauer, L. F., Stolen, R. H. & Gordon, J. P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980).

    Article  ADS  Google Scholar 

  22. Oxborrow, M. Traceable 2-d finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators. IEEE Trans. Microw. Theory Tech. 55, 1209–1218 (2007).

    Article  ADS  Google Scholar 

  23. Agha, I. H., Okawachi, Y., Foster, M. A., Sharping, J. E. & Gaeta, A. L. Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres. Phys. Rev. A 76, 043837 (2007).

    Article  ADS  Google Scholar 

  24. Gorodetsky, M. L. & Fomin, A. E. Geometrical theory of whispering-gallery modes. IEEE J. Sel. Top. Quantum Electron. 12, 33–39 (2006).

    Article  ADS  Google Scholar 

  25. Gorodetsky, M. L. & Fomin, A. E. Eigenfrequencies and Q factor in the geometrical theory of whispering-gallery modes. Quantum Electron. 37, 167–172 (2007).

    Article  ADS  Google Scholar 

  26. Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    Article  ADS  Google Scholar 

Download references


The authors thank M. Oxborrow for providing templates for FEM simulation of whispering gallery modes in toroidal microresonators. T.J.K. acknowledges support from an Independent Max Planck Junior Research Group. This work was funded as part of a Marie Curie Excellence Grant (RG-UHQ) and the DFG funded Nanosystems Initiative Munich (NIM). We acknowledge the Max Planck Institute of Quantum Optics and P. Gruss for continued support. M.L.G. acknowledges support from the Alexander von Humboldt Foundation. O.A. was supported by a Marie Curie Intra European Action (QUOM).

Author information

Authors and Affiliations


Corresponding author

Correspondence to T. J. Kippenberg.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Del'Haye, P., Arcizet, O., Gorodetsky, M. et al. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nature Photon 3, 529–533 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing