Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Static and dynamic wavelength routing via the gradient optical force

Abstract

We propose and demonstrate an all-optical wavelength routing approach that uses a tuning mechanism based upon the optical gradient force in a specially designed nano-optomechanical system. The resulting mechanically compliant ‘spiderweb’ resonator realizes seamless wavelength routing over a range of 3,000 times the intrinsic channel width, with a tuning efficiency of 309 GHz mW−1, a switching time of less than 200 ns, and 100% channel quality preservation over the entire tuning range. These results indicate the potential for radiation pressure actuated devices to be used in a variety of photonics applications, such as channel routing/switching, buffering, dispersion compensation, pulse trapping/release and widely tunable lasers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spiderweb microresonator images and simulations.
Figure 2: Pump–probe experimental setup.
Figure 3: Static tuning of a spiderweb microresonator.
Figure 4: Dynamic response of a spiderweb microresonator.

Similar content being viewed by others

References

  1. Beausoleil, R., Kuekes, P., Snider, G., Wang, S. & Williams, R. Nanoelectronic and nanophotonic interconnect. Proc. IEEE 96, 230–247 (2008).

    Article  Google Scholar 

  2. Berthold, J., Saleh, A., Blair, L. & Simmons, J. Optical networking: past, present, and future. J. Lightwave Technol. 26, 1104–1118 (2008).

    Article  ADS  Google Scholar 

  3. Gripp, J. et al. Optical switch fabrics for ultra-high-capacity IP routers. J. Lightwave Technol. 21, 2839–2850 (2003).

    Article  ADS  Google Scholar 

  4. Strand, J. & Chiu, A. Realizing the advantages of optical reconfigurability and restoration with integrated optical cross-connects. J. Lightwave Technol. 21, 2871–2882 (2003).

    Article  ADS  Google Scholar 

  5. Neilson, D., Doerr, C., Marom, D., Ryf, R. & Earnshaw, M. Wavelength selective switching for optical bandwidth management. Bell Labs Tech. J. 11, 105–128 (2006).

    Article  Google Scholar 

  6. Sadot, D. & Boimovich, E. Tunable optical filters for dense WDM networks. IEEE Commun. Mag. 36, 50–55 (1998).

    Article  Google Scholar 

  7. Eldada, L. Optical communication components. Rev. Sci. Instrum. 75, 575 (2004).

    Article  ADS  Google Scholar 

  8. Tomlinson, W. Evolution of passive optical component technologies for fiber-optic communication systems. J. Lightwave Technol. 26, 1046–1063 (2008).

    Article  ADS  Google Scholar 

  9. Little, B. et al. Ultra-compact Si-SiO2 microring resonator optical channel dropping filters. IEEE Photon. Technol. Lett. 10, 549–551 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  10. Yi, Y. et al. Tunable multichannel optical filter based on silicon photonic band gap materials actuation. Appl. Phys. Lett. 81, 4112–4114 (2002).

    Article  ADS  Google Scholar 

  11. Rabiei, P. & Steier, W. Tunable polymer double micro-ring filters. IEEE Photon. Technol. Lett. 15, 1255–1257 (2003).

    Article  ADS  Google Scholar 

  12. Asano, T., Kunishi, W., Nakamura, M., Song, B. & Noda, S. Dynamic wavelength tuning of channel-drop device in two-dimensional photonic crystal slab. Electron. Lett. 41, 37–38 (2005).

    Article  Google Scholar 

  13. Poon, J. et al. Wide-range tuning of polymer microring resonators by the photobleaching of CLD-1 chromophores. Opt. Lett. 29, 2584–2586 (2004).

    Article  ADS  Google Scholar 

  14. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

    Article  ADS  Google Scholar 

  15. Ilchenko, V. & Matsko, A. Optical resonators with whispering-gallery modes — Part II: applications. IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).

    Article  ADS  Google Scholar 

  16. Wu, M., Solgaard, O. & Ford, J. Optical MEMS for lightwave communication. J. Lightwave Technol. 24, 4433–4454 (2006).

    Article  ADS  Google Scholar 

  17. Monat, C., Domachuk, P. & Eggleton, B. Integrated optofluidics: a new river of light. Nature Photon. 1, 106–114 (2007).

    Article  ADS  Google Scholar 

  18. Xia, F., Rooks, M., Sekaric, L. & Vlasov, Y. Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. Opt. Express 15, 11934–11941 (2007).

    Article  ADS  Google Scholar 

  19. Sherwood-Droz, N. et al. Optical 4 × 4 hitless slicon router for optical networks-on-chip (NoC). Opt. Express 16, 15915–15922 (2008).

    Article  ADS  Google Scholar 

  20. Vlasov, Y., Green, W. & Xia, F. High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nature Photon. 2, 242–246 (2008).

    Article  Google Scholar 

  21. Fushman, I. et al. Ultrafast nonlinear optical tuning of photonic crystal cavities. Appl. Phys. Lett. 90, 091118 (2007).

    Article  ADS  Google Scholar 

  22. Yano, M., Yamagishi, F. & Tsuda, T. Optical MEMS for photonic switching-compact and stable optical crossconnect switches for simple, fast, and flexible wavelength applications in recent photonic networks. IEEE J. Sel. Top. Quantum Electron. 11, 383–394 (2005).

    Article  ADS  Google Scholar 

  23. Braginskii˘, V. B. & Manukin, A. B. Measurement of Weak Forces in Physics Experiments (University of Chicago Press, 1977).

    Google Scholar 

  24. Dorsel, A., McCullen, J., Meystre, P., Vignes, E. & Walther, H. Optical bistability and mirror confinement induced by radiation pressure. Phys. Rev. Lett. 51, 1550–1553 (1983).

    Article  ADS  Google Scholar 

  25. Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. J. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).

    Article  ADS  Google Scholar 

  26. Gigan, S. et al. Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006).

    Article  ADS  Google Scholar 

  27. Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M. & Heidmann, A. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–73 (2006).

    Article  ADS  Google Scholar 

  28. Kleckner, D. & Bouwmeester, D. Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75–78 (2006).

    Article  ADS  Google Scholar 

  29. Thompson, J. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).

    Article  ADS  Google Scholar 

  30. Li, M. et al. Harnessing optical forces in integrated photonic circuits. Nature 456, 480–484 (2008).

    Article  ADS  Google Scholar 

  31. Eichenfield, M., Camacho, R., Chan, J., Vahala, K. J. & Painter, O. A picogram- and nanometre-scale photonic crystal optomechanical cavity. Nature 459, 550–555 (2009).

    Article  ADS  Google Scholar 

  32. Anetsberger, G. et al. Near-field cavity optomechanics with nanomechanical oscillators. <http:arXiv:0904.4051v1> (2009).

  33. Lin, Q., Rosenberg, J., Jiang, X., Vahala, K. J. & Painter, O. Mechanical oscillation and cooling actuated by the optical gradient force. <http:arXiv:0905.2716v1> (2009).

  34. Abramovici, A. et al. Ligo: the laser interferometer gravitational-wave observatory. Science 256, 325 (1992).

    Article  ADS  Google Scholar 

  35. Braginskii˘, V. B., Khalili, F. Y. & Thorne, K. S. Quantum Measurement (Cambridge Univ. Press, 1992).

  36. Eichenfield, M. & Painter, O. J. Optomechanics of strongly coupled stacked monolithic microdisks. In Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, JMD1 (OSA, 2008).

  37. Wiederhecker, G. S., Chen, L., Gonarenko, A. & Lipson, M. Controlling photonic structures using optical forces. <http:arXiv:0904.0794v1> (2009).

  38. Povinelli, M. L. et al. Evanescent-wave bonding between optical waveguides. Opt. Lett. 30, 3042–3044 (2005).

    Article  ADS  Google Scholar 

  39. Rakich, P., Popović, M., Soljaaˇić, M. & Ippen, E. Trapping, corralling and spectral bonding of optical resonances through optically induced potentials. Nature Photon. 1, 658–665 (2007).

    Article  ADS  Google Scholar 

  40. Anetsberger, G., Riviere, R., Schliesser, A., Arcizet, O. & Kippenberg, T. J. Ultralow-dissipation optomechanical resonators on a chip. Nature Photon. 2, 627–633 (2008).

    Article  Google Scholar 

  41. Seeds, A. & Williams, K. Microwave photonics. J. Lightwave Technol. 24, 4628–4641 (2006).

    Article  ADS  Google Scholar 

  42. Kippenberg, T. & Vahala, K. Cavity opto-mechanics. Opt. Express 15, 17172–17205 (2007).

    Article  ADS  Google Scholar 

  43. Favero, I. & Karrai, K. Optomechanics of deformable optical cavities. Nature Photon. 3, 201–205 (2009).

    Article  ADS  Google Scholar 

  44. Bao, M. & Yang, H. Squeeze film air damping in MEMS. Sens. Actuators A 136, 3–27 (2007).

    Article  Google Scholar 

  45. Agrawal, G. P. Nonlinear Fiber Optics 4th ed (Academic Press, 2007).

    MATH  Google Scholar 

  46. DelHaye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  ADS  Google Scholar 

  47. Ferrera, M. et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nature Photon. 2, 737–740 (2008).

    Article  ADS  Google Scholar 

  48. Fontaine, N. et al. Continuously tunable optical buffering at 40 Gb/s for optical packet switching networks. J. Lightwave Technol. 26, 3776–3783 (2008).

    Article  ADS  Google Scholar 

  49. Madsen, C. et al. Integrated all-pass filters for tunable dispersion and dispersion slope compensation. IEEE Photon. Technol. Lett. 11, 1623–1625 (1999).

    Article  ADS  Google Scholar 

  50. Huang, M., Zhou, Y. & Chang-Hasnain, C. A nanoelectromechanical tunable laser. Nature Photon. 2, 180–184 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by a DARPA seedling effort managed by Prof. Henryk Temkin, and the DARPA Phaser program.

Author information

Authors and Affiliations

Authors

Contributions

J.R. and Q.L. performed the design, fabrication and testing of devices. All authors contributed to planning the measurements and writing the manuscript.

Corresponding authors

Correspondence to Jessie Rosenberg, Qiang Lin or Oskar Painter.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenberg, J., Lin, Q. & Painter, O. Static and dynamic wavelength routing via the gradient optical force. Nature Photon 3, 478–483 (2009). https://doi.org/10.1038/nphoton.2009.137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing