Letter | Published:

Phase shaping of single-photon wave packets

Nature Photonics volume 3, pages 469472 (2009) | Download Citation

Subjects

Abstract

Although the phase of a coherent light field can be precisely known, this is not true for the phase of the individual photons that create the field, considered individually1. Phase changes within single-photon wave packets, however, have observable effects. In fact, actively controlling the phase of individual photons has been identified as a powerful resource for quantum communication protocols2,3. Here we demonstrate arbitrary phase control of a single photon. The phase modulation is applied without affecting the photon's amplitude profile and is verified by means of a two-photon quantum interference measurement4,5, demonstrating fermionic spatial behaviour of photon pairs. Combined with previously demonstrated control of a single photon's amplitude6,7,8,9,10, frequency11, and polarization12, the fully deterministic phase shaping presented here allows for the complete control of single-photon wave packets.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & ‘Phase and angle variables in quantum mechanics. Rev. Mod. Phys. 40, 411–440 (1968).

  2. 2.

    , , & Quantum cryptography using entangled photons in energy–time Bell states. Phys. Rev. Lett. 84, 4737–4740 (2000).

  3. 3.

    , & Differential phase shift quantum key distribution. Phys. Rev. Lett. 89, 037902 (2002).

  4. 4.

    , & Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

  5. 5.

    & New type of Einstein–Podolsky–Rosen–Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett. 61, 2921–2924 (1988).

  6. 6.

    , & Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002).

  7. 7.

    , , , & Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004).

  8. 8.

    et al. Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004).

  9. 9.

    et al. Fast excitation and photon emission of a single-atom-cavity system. Phys. Rev. Lett. 101, 223601 (2008).

  10. 10.

    , , , & Electro-optic modulation of single photons. Phys. Rev. Lett. 101, 103601 (2008).

  11. 11.

    , , , & Quantum beat of two single photons. Phys. Rev. Lett. 93, 070503 (2004).

  12. 12.

    , , , & Polarization-controlled single photons. Phys. Rev. Lett. 98, 063601 (2007).

  13. 13.

    , , & Characterization of single photons using two-photon interference. Adv. At. Mol. Opt. Phys. 53, 253–289 (2006).

  14. 14.

    , & Optimal photons for quantum-information processing. Phys. Rev. A 72, 052332 (2005).

  15. 15.

    , , , & Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

  16. 16.

    , & Observation of a ‘quantum eraser’: A revival of coherence in a two-photon interference experiment. Phys. Rev. A 45, 7729–7739 (1992).

  17. 17.

    & Effect of frequency-mismatched photons in quantum-information processing. Phys. Rev. A 77, 042323 (2008).

  18. 18.

    et al. Time-bin entangled qubits for quantum communication created by femtosecond pulses. Phys. Rev. A 66, 062308 (2002).

  19. 19.

    , & A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

  20. 20.

    Quantum theory of two-photon wavepacket interference in a beamsplitter. J. Phys. B: At. Mol. Opt. Phys. 39, R293–R324 (2006).

  21. 21.

    , , & Vacuum-stimulated Raman scattering based on adiabatic passage in a high-finesse optical cavity. Phys. Rev. Lett. 85, 4872–4875 (2000).

  22. 22.

    et al. A single-photon server with just one atom. Nature Phys. 3, 253–255 (2007).

  23. 23.

    et al. Quantum interference of photon pairs from two remote trapped atomic ions. Nature Phys. 3, 538–541 (2007).

Download references

Acknowledgements

The authors thank S. Ritter for useful discussions on the manuscript. This work was partially supported by the Deutsche Forschungsgemeinschaft (Research Unit 635, Cluster of Excellence MAP) and the European Union (IST project SCALA). D.L.M. and E.F. acknowledge support from the Alexander von Humboldt Foundation.

Author information

Affiliations

  1. Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany

    • H. P. Specht
    • , J. Bochmann
    • , M. Mücke
    • , B. Weber
    • , E. Figueroa
    • , D. L. Moehring
    •  & G. Rempe

Authors

  1. Search for H. P. Specht in:

  2. Search for J. Bochmann in:

  3. Search for M. Mücke in:

  4. Search for B. Weber in:

  5. Search for E. Figueroa in:

  6. Search for D. L. Moehring in:

  7. Search for G. Rempe in:

Corresponding author

Correspondence to D. L. Moehring.

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2009.115

Further reading