Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Subdiffraction resolution in continuous samples

Super-resolution light microscopy methods either localize single molecular labels or treat the sample as a continuous object. The fundamental requirements for super-resolution in the continuum regime are spatially non-uniform illumination and a nonlinear photoresponse.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Resolution extension by spatially non-uniform illumination and a nonlinear photoresponse.

References

  1. Abbe, E. Arch. Mikrosk. Anat. 9, 413–468 (1873).

    Article  Google Scholar 

  2. Francon, M. Einfuehrung in die neueren Methoden der Lichtmikroskopie (Wissenschaftliche Bücherei, Verlag G. Braun, Karlsruhe, 1967).

    Google Scholar 

  3. Burns, D. H., Callis, J. B., Christian, G. D. & Davidson, E. R. Appl. Opt. 24, 154–161 (1985).

    Article  ADS  Google Scholar 

  4. Bornfleth, H., Saetzler, K., Eils, R. & Cremer, C. J. Microc. 189, 118–136 (1998).

    Article  Google Scholar 

  5. Lacoste, T. D. et al. Proc. Natl Acad. Sci. USA 97, 9461–9466 (2000).

    Article  ADS  Google Scholar 

  6. Heilemann, M. et al. Anal. Chem. 74, 3511–3517 (2002).

    Article  Google Scholar 

  7. Gordon, M. P., Ha, T. & Selvin, P. R. Proc. Natl Acad. Sci. USA 101, 6462–6465 (2004).

    Article  ADS  Google Scholar 

  8. Lidke, K. A., Rieger, B., Jovin, T. M. & Heintzmann, R. Opt. Exp. 13, 7052–7062 (2005).

    Article  ADS  Google Scholar 

  9. Betzig, E. et al. Science 313, 1642–1645 (2006).

    Article  ADS  Google Scholar 

  10. Rust, M. J., Bates, M. & Zhuang, X. Nature Meth. 3, 793–796 (2006).

    Article  Google Scholar 

  11. Hess, S. T., Girirajan, T. P. K. & Mason, M. D. Biophys. J. 91, 4258–4272 (2006).

    Article  ADS  Google Scholar 

  12. Zhuang, X. Nature Photon. 3, 365–367 (2009).

    Article  ADS  Google Scholar 

  13. Shroff, H., Galbraith, C. G., Galbraith, J. A. & Betzig, E. Nature Meth. 5, 417–423 (2008).

    Article  Google Scholar 

  14. Goodman, J. Introduction to Fourier Optics. (Roberts, Woodbury, 2007).

    Google Scholar 

  15. Heintzmann, R. & Cremer, C. Proc. SPIE 3568, 185–196 (1999).

    Article  ADS  Google Scholar 

  16. Gustafsson, M. G. L. J. Microsc. 198, 82–87 (2000).

    Article  Google Scholar 

  17. M. Minsky. Microscopy Apparatus. US patent 3,013,467 (1961).

  18. Gustafsson, M. G. L., Agard, D. A. & Sedat, J. W. J. Microsc. 195, 10–16 (1999).

    Article  Google Scholar 

  19. Shao, L. et al. Biophys. J. 94, 4971–4983 (2008).

    Article  ADS  Google Scholar 

  20. Petráň, M., Hadravský, M., Egger, M. D. & Galambos, R. J. Opt. Soc. Am. 58, 661–664 (1968).

    Article  ADS  Google Scholar 

  21. Hell, S. W. & Wichmann, J. Opt. Lett. 19, 780–782 (1994).

    Article  ADS  Google Scholar 

  22. Baer, S. C. Method and apparatus for improving resolution in scanned optical system. US patent 5,866,911 (1994).

  23. Heintzmann, R., Jovin, T. M. & Cremer, C. J. Opt. Soc. Am. A 19, 1599–1609 (2002).

    Article  ADS  Google Scholar 

  24. Gustafsson, M. G. L. Proc. Natl Acad. Sci. USA 102, 13081–13086 (2005).

    Article  ADS  Google Scholar 

  25. Bouwhuis, G. & Spruit, J. H. M. Appl. Opt. 29, 3766–3768 (1990).

    Article  ADS  Google Scholar 

  26. Denk, W. Proc. Natl Acad. Sci. USA 91, 6629–6633 (1994).

    Article  ADS  Google Scholar 

  27. Hell, S. W. et al. in The Handbook of Biological Confocal Microscopy 3rd edn, (ed. Pawley, J.B.), (Springer, 2006).

    Google Scholar 

  28. Schmidt, R. et al. Nano Lett. doi: 10.1021/nl901398t (2009).

  29. Hell, S. W. Nature Meth. 6, 24–32 (2009).

    Article  Google Scholar 

  30. Kner, P. et al. Nature Meth. 6, 339–342 (2009).

    Article  Google Scholar 

  31. Gustafsson, M. G. L. et al. Biophys. J. 94, 4957–4970 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heintzmann, R., Gustafsson, M. Subdiffraction resolution in continuous samples. Nature Photon 3, 362–364 (2009). https://doi.org/10.1038/nphoton.2009.102

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing