Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Carbon-nanotube photonics and optoelectronics

Abstract

Carbon nanotubes (CNTs) are nearly ideal one-dimensional (1D) systems, with diameters of only 1–3 nm and lengths that can be on the scale of centimetres. Depending on the arrangement of the carbon-atom honeycomb structure with respect to their axis, CNTs can be direct bandgap semiconductors, or metals with nearly ballistic conduction. The excited states of semiconducting CNTs can be produced by either optical or electrical means and form strongly bound (with dissociation energies of around 0.5 eV), luminescent, 1D excitons. The single-atomic-layer structure makes the optical properties of CNTs especially sensitive to their environment and external fields, and this can be used to tune them. Here we review the nature and properties of CNT excited states, the optical and electrical mechanisms of their production, their radiative and non-radiative modes of decay, the role of external electric fields, and their possible technological use as nanometre-scale light sources, photodetectors and photovoltaic devices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Effect of an external field on CNT excitons.

© 2007 ACS

Figure 2: Infrared emission from an ambipolar CNT-FET.
Figure 3: Unipolar infrared emission from CNT-FETs.

© 2006 ACS © 2006 WILEY

Figure 4: Photovoltage microscopy.

© 2007 AIP

Figure 5: Switching action of the Schottky barrier region in an ambipolar CNT.

© 2007 ACS

References

  1. Physical properties of carbon nanotubes (eds Saito, R., Dresselhaus, G. & Dresselhaus, M. S.) (Imperial College Press, London, 1998).

  2. Carbon Nanotubes: Synthesis, Structure, Properties and Applications (eds Dresselhaus, M. S., Dresselhaus, G. & Avouris, P.) (Springer, New York, 2000).

  3. Topics in Applied Physics: Carbon Nanotubes — Basic Concepts and Physical Properties. (eds Reich, S., Thomsen, C. & Maultzsch, J.) (Wiley, New York, 2004).

  4. McEuen, P. L., Fuhrer, M. & Park, H. Single-walled carbon nanotube electronics. IEEE Trans. Nanotech. 1, 78–85 (2002).

    Article  ADS  Google Scholar 

  5. (eds Dai, H. et al.) Nano: Brief Reports and Reviews — Electrical Transport Properties and Field-Effect Transistors of Carbon Nanotubes (World Scientific, 2006).

  6. Avouris, P. Carbon nanotube electronics. Phys. World 20, 40–45 (2007).

    Article  Google Scholar 

  7. O'Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Article  ADS  Google Scholar 

  8. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    Article  ADS  Google Scholar 

  9. Lefebvre, J., Austing, D. G., Bond, J. & Finnie, P. Photoluminescence imaging of suspended single-walled carbon nanotubes. Nano Lett. 6, 1603–1608 (2006).

    Article  ADS  Google Scholar 

  10. Lefebvre, J., Homma, Y. & Finnie, P. Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes. Phys. Rev. Lett. 90, 217401 (2003).

    Article  ADS  Google Scholar 

  11. Ma, Y.-Z. et al. Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy. J. Chem. Phys. 120, 3368–3373 (2004).

    Article  ADS  Google Scholar 

  12. Ostojic, G. N. et al. Interband recombination dynamics in resonantly excited single-walled carbon nanotubes. Phys. Rev. Lett. 92, 117402 (2004).

    Article  ADS  Google Scholar 

  13. Huang, L., Pedrosa, H. N. & Krauss, T. D. Ultrafast ground-state recovery of single-walled carbon nanotubes. Phys. Rev. Lett. 93, 017403 (2004).

    Article  ADS  Google Scholar 

  14. Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes. Phys. Rev. Lett. 92, 177401 (2004).

    Article  ADS  Google Scholar 

  15. Hagen, A., Moos, G., Talalaev, V. & Hertel, T. Electronic structure and dynamics of optically excited single-wall carbon nanotubes. Appl. Phys. A 78, 1137–1045 (2004).

    Article  ADS  Google Scholar 

  16. Spataru, C. D., Ismail-Beigi, S., Capaz, R. B. & Louie, S. G. Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes. Phys. Rev. Lett. 95, 247402 (2005).

    Article  ADS  Google Scholar 

  17. Perebeinos, V., Tersoff, J. & Avouris, P. Radiative lifetime of excitons in carbon nanotubes. Nano Lett. 5, 2495–2499 (2005).

    Article  ADS  Google Scholar 

  18. Citrin, D. S. Long intrinsic radiative lifetimes of excitons in quantum wires. Phys. Rev. Lett. 69, 3393–3396 (1992).

    Article  ADS  Google Scholar 

  19. Zhao, H. & Mazumdar, S. Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes. Phys. Rev. Lett. 93, 157402 (2004).

    Article  ADS  Google Scholar 

  20. Perebeinos, V., Tersoff, J. & Avouris, P. Scaling of excitons in carbon nanotubes. Phys. Rev. Lett. 92, 257402 (2004).

    Article  ADS  Google Scholar 

  21. Mortimer, I. B. & Nicholas, R. J. Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes. Phys. Rev. Lett. 98, 027404 (2007).

    Article  ADS  Google Scholar 

  22. Berger, S. et al. Temperature dependence of exciton recombination in semiconducting single-wall carbon nanotubes. Nano Lett. 7, 398–402 (2007).

    Article  ADS  Google Scholar 

  23. Shaver, J. et al. Magnetic brightening of carbon nanotube photoluminescence through symmetry breaking. Nano Lett. 7, 1851–1855 (2007).

    Article  ADS  Google Scholar 

  24. Spontaneous emission and laser oscillation in microcavities (eds Yokohama, H. & Ujihara, K.) (CRC, Boca Raton, Florida, 1995).

  25. Steiner, M., Qian, H., Hartschuh, A. & Meixner, A. J. Controlling nonequilibrium phonon populations in single-walled carbon nanotubes. Nano Lett. 7, 2239–2242 (2007).

    Article  ADS  Google Scholar 

  26. Hertel, T. et al. Intersubband decay of 1-d exciton resonances in carbon nanotubes. Nano Lett. 8, 87–91 (2008).

    Article  ADS  Google Scholar 

  27. Wang, F., Dukovic, G., Knoesel, E., Brus, L. E. & Heinz, T. F. Observation of rapid auger recombination in optically excited semiconducting carbon nanotubes. Phys. Rev. B 70, 241403 (2004).

    Article  ADS  Google Scholar 

  28. Ma, Y.-Z., Valkunas, L., Dexheimer, S. L., Bachilo, S. M. & Fleming, G. R. Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: Evidence for exciton-exciton annihilation. Phys. Rev. Lett. 94, 157402 (2005).

    Article  ADS  Google Scholar 

  29. Perebeinos, V., Tersoff, J. & Avouris, P. Effect of exciton-phonon coupling in the calculated optical absorption of carbon nanotubes. Phys. Rev. Lett 94, 027402 (2005).

    Article  ADS  Google Scholar 

  30. Perebeinos, V. & Avouris, P. Multiphonon decay and exciton indirect phononassisted ionization in semiconducting carbon nanotubes. <http://arxiv.org/abs/0804.0767v2>.

  31. Avouris, P., Chen, J., Freitag, M., Perebeinos, V. & Tsang, J. C. Carbon nanotube optoelectronics. Phys. Status Solidi b 243, 3197–3203 (2006).

    Article  ADS  Google Scholar 

  32. Cognet, L. et al. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316, 1465–1468 (2007).

    Article  ADS  Google Scholar 

  33. Lefebvre, J., Finnie, P. & Homma, Y. Temperature-dependent photoluminescence from single-walled carbon nanotubes. Phys. Rev. B 70, 045419 (2004).

    Article  ADS  Google Scholar 

  34. Perebeinos, V., Tersoff, J. & Avouris, P. Electron-phonon interaction and transport in semiconducting carbon nanotubes. Phys. Rev. Lett 94, 086802 (2005).

    Article  ADS  Google Scholar 

  35. Högele, A., Galland, C., Winger, M. & Imamoglu, A. Quantum light from a carbon nanotube. <http://arxiv.org/abs/0707.1923v2>.

  36. Rybczynski, J. et al. Subwavelength waveguide for visible light. Appl. Phys. Lett. 90, 021104 (2007).

    Article  ADS  Google Scholar 

  37. Quantum theory of the optical and electronic properties of semiconductors (eds Haug, H. & Koch, S. W.) (World Scientific, London, 2005).

  38. Taishi, T., Yuji, M. & Yoshihiro, I. Optical evidence of stark effect in singlewalled carbon nanotube transistors. Appl. Phys. Lett. 89, 263510 (2006).

    Article  ADS  Google Scholar 

  39. Takenobu, T., Murayama, Y., Shiraishi, M. & Iwasa, Y. Optical observation of carrier accumulation in single-walled carbon nanotube transistors. Jpn J. Appl. Phys. 45, L1190–L1192 (2006).

    Article  ADS  Google Scholar 

  40. Perebeinos, V. & Avouris, P. Exciton ionization, Franz-Keldysh, and Stark effects in carbon nanotubes. Nano Lett. 7, 609–613 (2007).

    Article  ADS  Google Scholar 

  41. Mohite, A., Lin, J. T., Sumanasekera, G. & Alphenaar, B. W. Field-enhanced photocurrent spectroscopy of excitonic states in single-wall carbon nanotubes. Nano Lett. 6, 1369–1373 (2006).

    Article  ADS  Google Scholar 

  42. Liu, X. et al. Third-order optical nonlinearity of the carbon nanotubes. Appl. Phys. Lett. 74, 164–166 (1999).

    Article  ADS  Google Scholar 

  43. Seo, J. et al. Third-order optical nonlinearities of singlewall carbon nanotubes for nonlinear transmission limiting application. J. Phys.: Conf. Series 38, 37–40 (2006).

    ADS  Google Scholar 

  44. Chen, Y. C. et al. Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm. Appl. Phys. Lett. 81, 975–977 (2002).

    Article  ADS  Google Scholar 

  45. Tatsuura, S. et al. Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications. Adv. Mater. 15, 534–537 (2003).

    Article  Google Scholar 

  46. Rozhina, A. G. et al. Anisotropic saturable absorption of single-wall carbon nanotubes aligned in polyvinyl alcohol. Chem. Phys. Lett. 405, 288–293 (2005).

    Article  ADS  Google Scholar 

  47. Sakakibara, Y., Tatsuura, S., Kataura, H., Tokumoto, M. & Achiba, Y. Nearinfrared saturable absorption of single-wall carbon nanotubes prepared by laser ablation method. Jpn J. Appl. Phys. 42, L494–L496 (2003).

    Article  ADS  Google Scholar 

  48. Rozhin, A. G. et al. Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker. Appl. Phys. Lett. 88, 051118 (2006).

    Article  ADS  Google Scholar 

  49. Valle, G. D. et al. Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser. Appl. Phys. Lett. 89, 231115 (2006).

    Article  ADS  Google Scholar 

  50. Kashiwagi, K. et al. Planar waveguide-type saturable absorber based on carbon nanotubes. Appl. Phys. Lett. 89, 081125 (2006).

    Article  ADS  Google Scholar 

  51. Schibli, T. et al. Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes. Opt. Express 13, 8025–8031 (2005).

    Article  ADS  Google Scholar 

  52. Léonard, F. & Tersoff, J. Novel length scales in nanotube devices. Phys. Rev. Lett. 83, 5174–5177 (1999).

    Article  ADS  Google Scholar 

  53. Martel, R. et al. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 87, 256805 (2001).

    Article  ADS  Google Scholar 

  54. Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

    Article  ADS  Google Scholar 

  55. Heinze, S. et al. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002).

    Article  ADS  Google Scholar 

  56. Nakanishi, T., Bachtold, A. & Dekker, C. Transport through the interface between a semiconducting carbon nanotube and a metal electrode. Phys. Rev. B 66, 073307 (2002).

    Article  ADS  Google Scholar 

  57. Radosavljevic, M., Heinze, S., Tersoff, J. & Avouris, P. Drain voltage scaling in carbon nanotube transistors. Appl. Phys. Lett. 83, 2435–2437 (2003).

    Article  ADS  Google Scholar 

  58. Lin, Y. M., Appenzeller, J. & Avouris, P. Ambipolar-to-unipolar conversion of carbon nanotube transistors by gate structure engineering. Nano Lett. 4, 947–950 (2004).

    Article  ADS  Google Scholar 

  59. Klinke, C., Chen, J., Afzali, A. & Avouris, P. Charge transfer induced polarity switching in carbon nanotube transistors. Nano Lett. 5, 555–558 (2005).

    Article  ADS  Google Scholar 

  60. Misewich, J. A. et al. Electrically induced optical emission from a carbon nanotube FET. Science 300, 783–786 (2003).

    Article  ADS  Google Scholar 

  61. Freitag, M. et al. Hot carrier electroluminescence from a single carbon nanotube. Nano Lett. 4, 1063–1066 (2004).

    Article  ADS  Google Scholar 

  62. Freitag, M. et al. Mobile ambipolar domain in carbon-nanotube infrared emitters. Phys. Rev. Lett 93, 076803 (2004).

    Article  ADS  Google Scholar 

  63. Tersoff, J., Freitag, M., Tsang, J. C. & Avouris, P. Device modeling of longchannel nanotube electro-optical emitter. Appl. Phys. Lett. 86, 263108 (2005).

    Article  ADS  Google Scholar 

  64. Jing, G. & Muhammad, A. A. Carrier transport and light-spot movement in carbon-nanotube infrared emitters. Appl. Phys. Lett. 86, 023105 (2005).

    Article  Google Scholar 

  65. Perebeinos, V. & Avouris, P. Impact excitation by hot carriers in carbon nanotubes. Phys. Rev. B 74, 121410 (2006).

    Article  ADS  Google Scholar 

  66. Chen, J. et al. Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310, 1171–1174 (2005).

    Article  ADS  Google Scholar 

  67. Marty, L. et al. Exciton formation and annihilation during 1d impact excitation of carbon nanotubes. Phys. Rev. Lett. 96, 136803 (2006).

    Article  ADS  Google Scholar 

  68. Freitag, M. et al. Electrically excited, localized infrared emission from single carbon nanotubes. Nano Lett. 6, 1425–1433 (2006).

    Article  ADS  Google Scholar 

  69. Freitag, M. et al. Scanning photovoltage microscopy of potential modulations in carbon nanotubes. Appl. Phys. Lett. 91, 031101 (2007).

    Article  ADS  Google Scholar 

  70. Mann, D. et al. Electrically driven thermal light emission from individual singlewalled carbon nanotubes. Nature Nanotech. 2, 33–38 (2007).

    Article  ADS  Google Scholar 

  71. Lee, K. et al. Single wall carbon nanotubes for p-type ohmic contacts to gan light-emitting diodes. Nano Lett. 4, 911–914 (2004).

    Article  ADS  Google Scholar 

  72. Li, J. et al. Organic light-emitting diodes having carbon nanotube anodes. Nano Lett. 6, 2472–2477 (2006).

    Article  ADS  Google Scholar 

  73. Woo, H. S. et al. Hole blocking in carbon nanotube–polymer composite organic light-emitting diodes based on poly (m-phenylene vinylene-co-2, 5-dioctoxy-pphenylene vinylene). Appl. Phys. Lett. 77, 1393–1395 (2000).

    Article  ADS  Google Scholar 

  74. Fournet, P. et al. Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer. J. Appl. Phys. 90, 969–975 (2001).

    Article  ADS  Google Scholar 

  75. Kima, J.-Y., Kima, M., Kimb, H., Joob, J. & Choi, J.-H. Electrical and optical studies of organic light emitting devices using SWCNTs-polymer nanocomposites. Opt. Mater. 21, 147–151 (2003).

    Article  ADS  Google Scholar 

  76. Lee, K. W. et al. Enhanced electroluminescence in polymer-nanotube composites. Appl. Phys. Lett. 91, 023110 (2007).

    Article  ADS  Google Scholar 

  77. Kymakis, E. & Amaratunga, G. A. J. Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett. 80, 112–114 (2002).

    Article  ADS  Google Scholar 

  78. Bhattacharyya, S., Kymakis, E. & Amaratunga, G. A. J. Photovoltaic properties of dye functionalized single-wall carbon nanotube/conjugated polymer devices. Chem. Mater. 16, 4819–4823 (2004).

    Article  Google Scholar 

  79. Landi, B. J. et al. Cdse quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Solar Energy Mater. Solar Cells 87, 733–746 (2005).

    Article  Google Scholar 

  80. Freitag, M., Martin, Y., Misewich, J. A., Martel, R. & Avouris, P. H. Photoconductivity of single carbon nanotubes. Nano Lett. 3, 1067–1071 (2003).

    Article  ADS  Google Scholar 

  81. Avouris, P. et al. Carbon nanotube electronics and optoelectronics. Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, San Francisco, USA 525 (2004).

    Chapter  Google Scholar 

  82. Balasubramanian, K. et al. Photoelectronic transport imaging of individual semiconducting carbon nanotubes. Appl. Phys. Lett. 84, 2400–2402 (2004).

    Article  ADS  Google Scholar 

  83. Lee, J. U. Photovoltaic effect in ideal carbon nanotube diodes. Appl. Phys. Lett. 87, 073101 (2005).

    Article  ADS  Google Scholar 

  84. Balasubramanian, K., Burghard, M., Kern, K., Scolari, M. & Mews, A. Photocurrent imaging of charge transport barriers in carbon nanotube devices. Nano Lett. 5, 507–510 (2005).

    Article  ADS  Google Scholar 

  85. Freitag, M. et al. Imaging of the Schottky barriers and charge depletion in carbon nanotube transistors. Nano Lett. 7, 2037–2042 (2007).

    Article  ADS  Google Scholar 

  86. Itkis, M. E., Borondics, F., Yu, A. & Haddon, R. C. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science 312, 413–416 (2006).

    Article  ADS  Google Scholar 

  87. Qiu, X. H., Freitag, M., Perebeinos, V. & Avouris, P. Photoconductivity spectra of single-carbon nanotubes: Implications on the nature of their excited states. Nano Lett. 5, 749–752 (2005).

    Article  ADS  Google Scholar 

  88. Lee, J. U., Codella, P. J. & Pietrzykowski, M. Direct probe of excitonic and continuum transitions in the photocurrent spectroscopy of individual carbon nanotube p-n diodes. Appl. Phys. Lett. 90, 053103 (2007).

    Article  ADS  Google Scholar 

  89. Lee, J. U. Band-gap renormalization in carbon nanotubes: Origin of the ideal diode behavior in carbon nanotube p-n structures. Phys. Rev. B 75, 075409 (2007).

    Article  ADS  Google Scholar 

  90. Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005).

    Article  ADS  Google Scholar 

  91. Maultzsch, J. et al. Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Phys. Rev. B 72, 241402 (2005).

    Article  ADS  Google Scholar 

  92. Mohite, A., Chakraborty, S., Gopinath, P., Sumanasekera, G. U. & Alphenaar, B. W. Displacement current detection of photoconduction in carbon nanotubes. Appl. Phys. Lett. 86, 061114 (2005).

    Article  ADS  Google Scholar 

  93. Borghetti, J. et al. Optoelectronic switch and memory devices based on polymerfunctionalized carbon nanotube transistors. Adv. Mater. 18, 2535–2540 (2006).

    Article  Google Scholar 

  94. Ahn, Y. H., Tsen, W., Kim, B., Park, Y. W. & Park, J. Photocurrent imaging of p-n junctions and local defects in ambipolar carbon nanotube transistors. <http://arxiv.org/abs/0707.3176v1>.

  95. Lee, E. J. H. et al. Electronic band structure mapping of nanotube transistors by scanning photocurrent microscopy. Small 3, 2038–2042 (2007).

    Article  Google Scholar 

  96. Dresselhaus, M. S., Dresselhaus, G., Saito, R. & Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005).

    Article  ADS  Google Scholar 

  97. Ando, T. J. Excitons in carbon nanotubes. Phys. Soc. Jpn 66, 1066–1073 (1997).

    Article  ADS  Google Scholar 

  98. Spataru, C. D., Ismail-Beigi, S., Benedict, L. X. & Louie, S. G. Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett 92, 077402 (2004).

    Article  ADS  Google Scholar 

  99. Dukovic, G. et al. Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes. Nano Lett. 5, 2314–2318 (2005).

    Article  ADS  Google Scholar 

  100. Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986).

    Article  ADS  Google Scholar 

  101. Kane, C. L. & Mele, E. J. Electron interactions and scaling relations for optical excitations in carbon nanotubes. Phys. Rev. Lett. 93, 197402 (2004).

    Article  ADS  Google Scholar 

  102. Moore, V. C. et al. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3, 1379–1382 (2003).

    Article  ADS  Google Scholar 

  103. Lefebvre, J., Fraser, J. M., Homma, Y. & Finnie, P. Photoluminescence from single-walled carbon nanotubes: A comparison between suspended and micelleencapsulated nanotubes. Appl. Phys. A 78, 1107–1110 (2004).

    Article  ADS  Google Scholar 

  104. Hertel, T. et al. Spectroscopy of single- and double-wall carbon nanotubes in different environments. Nano Lett. 5, 511–514 (2005).

    Article  ADS  Google Scholar 

  105. Ohno, Y. et al. Chirality-dependent environmental effects in photoluminescence of single-walled carbon nanotubes. Phys. Rev. B 73, 235427 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phaedon Avouris.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Avouris, P., Freitag, M. & Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nature Photon 2, 341–350 (2008). https://doi.org/10.1038/nphoton.2008.94

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.94

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing