A speckle beam of light breaks up into small fragments as it propagates in a standard self-focusing nonlinear material. Now, by exploiting the non-local thermal response of a material, it is possible to trap a speckle beam in a self-induced waveguide.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Mitchell, M. et al. Phys. Rev. Lett. 77, 490–493 (1996).
Mitchell, M. & Segev, M. Nature 387, 880–883 (1997).
Kivshar, Y. S. & Agrawal, G. P. Optical Solitons: From Fibers to Photonic Crystals (Academic, California, 2003).
Picozzi, A. & Haelterman, M. Phys. Rev. Lett. 86, 2010–2013 (2001).
Rotschild, C., Schwartz, T., Cohen, O. & Segev, M. Nature Photon. 2, 371–376 (2008).
Cohen, O., Buljan, H., Schwartz, T., Fleischer, J. W. & Segev, M. Phys. Rev. E 73, 015601 (2006).
Peccianti, M. & Assanto, G. Opt. Lett. 26, 1791–1793 (2001).
Snyder, A. W. & Mitchell, D. J. Science 276, 1538–1542 (1997).
Picozzi, A. Opt. Express 15, 9063–9083 (2007).
Pesme D. et al. Plasma Phys. Controlled Fusion 44, B53–B67 (2002).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Picozzi, A. Self-trapping of speckled light beams. Nature Photon 2, 334–335 (2008). https://doi.org/10.1038/nphoton.2008.89
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2008.89