Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Grating formation by metal-nanoparticle-mediated coupling of light into waveguided modes


The trapping, manipulation and conversion of light by nanostructures are of great interest at present, both scientifically and for applications. An important part of this is the interaction of light with optical waveguides, mediated by plasmon-active metal-nanoparticle arrangements. Strong coupling of incident light to waveguide-plasmon polaritons has been demonstrated by means of nanoparticle lattices1,2, as well as by disordered metal-island film distributions3, and it has further been used to enhance the efficiency of solar cells4,5 and LED (ref. 6). Here, we show that a disordered metal-nanoparticle layer, supported by a 40-nm-thick Si3N4 membrane, enables coupling of a single laser pulse to the waveguided modes of the membrane, and that, under certain conditions, this leads to reorganization of the nanoparticle ensemble into ordered one- and two-dimensional grating patterns. Such self-patterning has not been observed before, and could lead to useful methods for the fabrication of complex nanostructures and advanced photonic devices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental geometry and the phenomena involved.
Figure 2: Scanning electron microscopy images of samples with patterned gold nanoparticle films on membranes with a thickness of 40 nm.
Figure 3: Experimental results and modelling.


  1. Christ, A., Tikhodeev, S. G., Gippius, N. A., Kuhl, J. & Giessen, H. Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys. Rev. Lett. 91, 183901 (2003).

    Article  ADS  Google Scholar 

  2. Zentgraf, T., Christ, A., Kuhl, J. & Giessen, H. Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals. Phys. Rev. Lett. 93, 243901 (2004).

    Article  ADS  Google Scholar 

  3. Stuart, H. R. & Hall, D. G. Enhanced dipole–dipole interaction between elementary radiators near a surface. Phys. Rev. Lett. 80, 5663–5666 (1998).

    Article  ADS  Google Scholar 

  4. Stuart, H. R. & Hall, D. G. Island size effects in nanoparticle-enhanced photodetectors. Appl. Phys. Lett. 73, 3815–3817 (1998).

    Article  ADS  Google Scholar 

  5. Stuart, H. R. & Hall, D. G. Absorption enhancement in silicon-on-insulator waveguides using metal island films. Appl. Phys. Lett. 69, 2327–2329 (1996).

    Article  ADS  Google Scholar 

  6. Pillai, S. et al. Enhanced emission from Si-based light-emitting diodes using surface plasmons. Appl. Phys. Lett. 88, 161102 (2006).

    Article  ADS  Google Scholar 

  7. Grant, A. W., Hu, Q. H. & Kasemo, B. Transmission electron microscopy ‘windows’ for nanofabricated structures. Nanotechnology 15, 1175–1181 (2004).

    Article  ADS  Google Scholar 

  8. Truong, V. V. & Scott, G. D. Optical constants of aggregated gold films. J. Opt. Soc. Am. 66, 124–131 (1976).

    Article  ADS  Google Scholar 

  9. Truong, V. V. & Scott, G. D. Optical properties of aggregated noble metal films. J. Opt. Soc. Am. 67, 502–510 (1977).

    Article  ADS  Google Scholar 

  10. Tien, P. K. Light waves in thin films and integrated optics. Appl. Opt. 10, 2395–2413 (1971).

    Article  ADS  Google Scholar 

  11. Jackson, J. D. Classical Electrodynamics (John Wiley & Sons, New York, 1999).

    MATH  Google Scholar 

  12. Soller, B. J. & Hall, D. G. Scattering enhancement from an array of interacting dipoles near a planar waveguide. J. Opt. Soc. Am. B 19, 2437–2448 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  13. Lewis, L. J., Jensen, P., Combe, N. & Barrat, J. L. Diffusion of gold nanoclusters on graphite. Phys. Rev. B 61, 16084–16090 (2000).

    Article  ADS  Google Scholar 

  14. Habenicht, A., Olapinski, M., Burmeister, F., Leiderer, P. & Boneberg, J. Jumping nanodroplets. Science 309, 2043–2045 (2005).

    Article  ADS  Google Scholar 

  15. Gordon, J. P. Radiation forces and momenta in dielectric media. Phys. Rev. A 8, 14–21 (1973).

    Article  ADS  Google Scholar 

  16. Jin, R. C. et al. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425, 487–490 (2003).

    Article  ADS  Google Scholar 

  17. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  ADS  Google Scholar 

  18. Shackelford, J. F. & Alexander, W. (eds) CRC Materials Science and Engineering Handbook (CRC Press, Boca Raton, FL, 2001).

    Google Scholar 

  19. Buffat, P. & Borel, J. P. Size effect on melting temperature of gold particles. Phys. Rev. A 13, 2287–2298 (1976).

    Article  ADS  Google Scholar 

  20. Chew, W. C. Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1990).

    Google Scholar 

  21. Johnson, P. B. & Christy, R. W. Optical-constants of noble-metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  ADS  Google Scholar 

Download references


The work presented here was partly supported through the Swedish Foundation for Strategic Research program PHOTO/NANO grant no. 2001:0321/53. Funding for the SEMlab from the Knut and Alice Wallenberg Foundation is gratefully acknowledged.

Author information

Authors and Affiliations



L. Eurenius and C. Hägglund contributed equally to this work.

Corresponding authors

Correspondence to L. Eurenius, C. Hägglund or D. Chakarov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eurenius, L., Hägglund, C., Olsson, E. et al. Grating formation by metal-nanoparticle-mediated coupling of light into waveguided modes. Nature Photon 2, 360–364 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing