Abstract
Optical-field ionized plasmas are of great interest owing to their unique properties and the fact that they suit many applications, such as the study of nuclear fusion1, generation of energetic electrons2,3,4,5 and ions6,7, X-ray emission8,9, X-ray lasers10,11,12 and extreme–UV attosecond pulse generation13. A detailed knowledge of the plasma dynamics can be critical for optimizing a given application. Here we demonstrate a method for real-time imaging of the electric-field distribution in optical-field ionized plasmas with ultrahigh temporal resolution, yielding information that is not accessible by other methods. The technique, based on electron deflectometry, yields images that reveal a positively charged core and a cloud of electrons expanding far beyond the Debye length.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Ditmire, T. et al. Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters. Nature 398, 489–492 (1999).
Baton, S. D. et al. Evidence of ultrashort electron bunches in laser–plasma interactions at relativistic intensities. Phys. Rev. Lett. 91, 105001 (2003).
Davies, J. R., Bell, A. R. & Tatarakis, M. Magnetic focusing and trapping of high-intensity laser-generated fast electrons at the rear of solid targets. Phys. Rev. E 59, 6032–6036 (1999).
Geddes, C. G. R. et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004).
Wilks, S. C., Kruer, W. L., Tabak, M. & Langdon, A. B. Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 1383–1386 (1992).
Ditmire, T. et al. High-energy ions produced in explosions of superheated atomic clusters. Nature 386, 54–56 (1997).
Wei, M. S. et al. Ion acceleration by collisionless shocks in high-intensity-laser–underdense-plasma interaction. Phys. Rev. Lett. 93, 155003 (2004).
Fill, E. et al. XUV spectra of optical-field-ionized plasmas. Phys. Rev. E 51, 6016–6026 (1995).
McPherson, A., Luk, T. S., Thompson, B. D., Boyer, K. & Rhodes, C. K. Multiphoton-induced X-ray emission and amplification from clusters. Appl. Phys. B 57, 337–347 (1993).
Amendt, P., Eder, D. C. & Wilks, S. C. X-ray lasing by optical-field-induce ionization. Phys. Rev. Lett. 66, 2589–2592 (1991).
Lemoff, B. E., Yin, G. Y., Gordon III, C. L., Barty, C. P. J. & Harris, S. E. Demonstration of a 10-Hz femtosecond-pulse-driven XUV laser at 41.8 nm in Xe IX. Phys. Rev. Lett. 74, 1574–1578 (1995).
Nagata, Y. et al. Soft-X-ray amplification of the Lyman-alpha transition by optical-field-induced ionization. Phys. Rev. Lett. 71, 3774–3777 (1993).
Bandrauk, A. D., Chelkowski, S. & Nguyen, H. S. Nonlinear photon processes in molecules at high intensities—route to XUV-attosecond pulse generation. J. Mol. Structure 735, 203–209 (2005).
Augst, S., Strickland, D., Meyerhofer, D. D., Chin, S. L. & Eberly, J. H. Tunneling ionization of noble gases in a high-intensity laser field. Phys. Rev. Lett. 63, 2212–2215 (1989).
Corkum, P. B., Burnett, N. H. & Brunel, F. Above-threshold ionization in the long-wavelength limit. Phys. Rev. Lett. 62, 1259–1262 (1989).
Zweiback, J., Ditmire, T. & Perry, M. D. Femtosecond time-resolved studies of the dynamics of noble-gas cluster explosions. Phys. Rev. A 59, R3166–R3169 (1999).
Glover, T. E., Donnelly, T. D., Lipman, E. A., Sullivan, A. & Falcone, R. W. Subpicosecond Thomson scattering measurements of optically ionized helium plasmas. Phys. Rev. Lett. 73, 78–81 (1994).
Augst, S., Meyerhofer, D. D., Strickland, D. & Chin, S. L. Laser ionization of noble gases by Coulomb-barrier suppression. J. Opt. Soc. Am. B 8, 858–867 (1991).
Tzortzakis, S., Prade, B., Franco, M. & Mysyrowicz, A. Time evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air. Opt. Commun. 181, 123–127 (2000).
Centurion, M., Pu, Y., Psaltis, D. & Hänsch, T. W. Holographic recording of laser-induced plasma. Opt. Lett. 29, 772–774 (2004).
Dunne, M. et al. Experimental observations of the expansion of an optical-field-induced ionization channel in a gas jet target. Phys. Rev. Lett. 72, 1024–1027 (1994).
Frasinski, L. J. et al. Femtosecond dynamics of multielectron dissociative ionization by use of picosecond laser. Phys. Rev. Lett. 58, 2424–2427 (1987).
MacKinnon, A. J. et al. Proton radiography as an electromagnetic field and density perturbation diagnostic. Rev. Sci. Instrum. 75, 3531–3536 (2004).
Li, C. K. et al. Measuring E and B fields in laser-produced plasmas with monoenergetic proton radiography. Phys. Rev. Lett. 97, 135003 (2006).
Mackinnon, A. J. et al. Proton radiography of a laser-driven implosion. Phys. Rev. Lett. 97, 045001 (2006).
Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).
Lerner, P. B. & Cohen, J. S. Formation of hot electrons in noble gases by intense-field ionization: A quasistatic tunneling, independent-electron model. Phys. Rev. A 51, 1464–1470 (1995).
Atzeni, S. & Meyer-Ter-Vehn, J. The Physics of Inertial Fusion 132–133 (Clarendon Oxford, 2004).
Acknowledgements
This work was funded in part by Deutsche Forschungsgemeinschaft (DFG) under contract SFB Transregio 6039 and by the DFG Cluster of Excellence ‘Munich Centre for Advanced Photonics’ (MAP; http://www.munich-photonics.de). M.C. is supported by a research fellowship from the Alexander von Humboldt Foundation. P.R. is supported by a scholarship from the International Max Planck Research School on Advanced Photon Science (IMPRS–APS; http://www.mpq.mpg.de/APS). S.A.T. thanks the Deutsche Forschungsgemeinschaft for a research fellowship (project FU 363/1).
Author information
Authors and Affiliations
Contributions
Martin Centurion and Peter Reckenthaeler contributed equally to this work.
Corresponding authors
Rights and permissions
About this article
Cite this article
Centurion, M., Reckenthaeler, P., Trushin, S. et al. Picosecond electron deflectometry of optical-field ionized plasmas. Nature Photon 2, 315–318 (2008). https://doi.org/10.1038/nphoton.2008.77
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2008.77
This article is cited by
-
Jitter-free 40-fs 375-keV electron pulses directly accelerated by an intense laser beam and their application to direct observation of laser pulse propagation in a vacuum
Scientific Reports (2020)
-
Transient lensing from a photoemitted electron gas imaged by ultrafast electron microscopy
Nature Communications (2020)
-
Observing charge separation in nanoantennas via ultrafast point-projection electron microscopy
Light: Science & Applications (2018)
-
Imaging of alignment and structural changes of carbon disulfide molecules using ultrafast electron diffraction
Nature Communications (2015)
-
Ultrafast electronic spectroscopy for chemical analysis near liquid water interfaces: concepts and applications
Applied Physics A (2009)