Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Picosecond electron deflectometry of optical-field ionized plasmas


Optical-field ionized plasmas are of great interest owing to their unique properties and the fact that they suit many applications, such as the study of nuclear fusion1, generation of energetic electrons2,3,4,5 and ions6,7, X-ray emission8,9, X-ray lasers10,11,12 and extreme–UV attosecond pulse generation13. A detailed knowledge of the plasma dynamics can be critical for optimizing a given application. Here we demonstrate a method for real-time imaging of the electric-field distribution in optical-field ionized plasmas with ultrahigh temporal resolution, yielding information that is not accessible by other methods. The technique, based on electron deflectometry, yields images that reveal a positively charged core and a cloud of electrons expanding far beyond the Debye length.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pump–probe images of plasma evolution.
Figure 2: High-resolution pump–probe images.
Figure 3: Calculated plasma fields and simulated beam.


  1. Ditmire, T. et al. Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters. Nature 398, 489–492 (1999).

    Article  ADS  Google Scholar 

  2. Baton, S. D. et al. Evidence of ultrashort electron bunches in laser–plasma interactions at relativistic intensities. Phys. Rev. Lett. 91, 105001 (2003).

    Article  ADS  Google Scholar 

  3. Davies, J. R., Bell, A. R. & Tatarakis, M. Magnetic focusing and trapping of high-intensity laser-generated fast electrons at the rear of solid targets. Phys. Rev. E 59, 6032–6036 (1999).

    Article  ADS  Google Scholar 

  4. Geddes, C. G. R. et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004).

    Article  ADS  Google Scholar 

  5. Wilks, S. C., Kruer, W. L., Tabak, M. & Langdon, A. B. Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 1383–1386 (1992).

    Article  ADS  Google Scholar 

  6. Ditmire, T. et al. High-energy ions produced in explosions of superheated atomic clusters. Nature 386, 54–56 (1997).

    Article  ADS  Google Scholar 

  7. Wei, M. S. et al. Ion acceleration by collisionless shocks in high-intensity-laser–underdense-plasma interaction. Phys. Rev. Lett. 93, 155003 (2004).

    Article  ADS  Google Scholar 

  8. Fill, E. et al. XUV spectra of optical-field-ionized plasmas. Phys. Rev. E 51, 6016–6026 (1995).

    Article  ADS  Google Scholar 

  9. McPherson, A., Luk, T. S., Thompson, B. D., Boyer, K. & Rhodes, C. K. Multiphoton-induced X-ray emission and amplification from clusters. Appl. Phys. B 57, 337–347 (1993).

    Article  ADS  Google Scholar 

  10. Amendt, P., Eder, D. C. & Wilks, S. C. X-ray lasing by optical-field-induce ionization. Phys. Rev. Lett. 66, 2589–2592 (1991).

    Article  ADS  Google Scholar 

  11. Lemoff, B. E., Yin, G. Y., Gordon III, C. L., Barty, C. P. J. & Harris, S. E. Demonstration of a 10-Hz femtosecond-pulse-driven XUV laser at 41.8 nm in Xe IX. Phys. Rev. Lett. 74, 1574–1578 (1995).

    Article  ADS  Google Scholar 

  12. Nagata, Y. et al. Soft-X-ray amplification of the Lyman-alpha transition by optical-field-induced ionization. Phys. Rev. Lett. 71, 3774–3777 (1993).

    Article  ADS  Google Scholar 

  13. Bandrauk, A. D., Chelkowski, S. & Nguyen, H. S. Nonlinear photon processes in molecules at high intensities—route to XUV-attosecond pulse generation. J. Mol. Structure 735, 203–209 (2005).

    Article  ADS  Google Scholar 

  14. Augst, S., Strickland, D., Meyerhofer, D. D., Chin, S. L. & Eberly, J. H. Tunneling ionization of noble gases in a high-intensity laser field. Phys. Rev. Lett. 63, 2212–2215 (1989).

    Article  ADS  Google Scholar 

  15. Corkum, P. B., Burnett, N. H. & Brunel, F. Above-threshold ionization in the long-wavelength limit. Phys. Rev. Lett. 62, 1259–1262 (1989).

    Article  ADS  Google Scholar 

  16. Zweiback, J., Ditmire, T. & Perry, M. D. Femtosecond time-resolved studies of the dynamics of noble-gas cluster explosions. Phys. Rev. A 59, R3166–R3169 (1999).

    Article  ADS  Google Scholar 

  17. Glover, T. E., Donnelly, T. D., Lipman, E. A., Sullivan, A. & Falcone, R. W. Subpicosecond Thomson scattering measurements of optically ionized helium plasmas. Phys. Rev. Lett. 73, 78–81 (1994).

    Article  ADS  Google Scholar 

  18. Augst, S., Meyerhofer, D. D., Strickland, D. & Chin, S. L. Laser ionization of noble gases by Coulomb-barrier suppression. J. Opt. Soc. Am. B 8, 858–867 (1991).

    Article  ADS  Google Scholar 

  19. Tzortzakis, S., Prade, B., Franco, M. & Mysyrowicz, A. Time evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air. Opt. Commun. 181, 123–127 (2000).

    Article  ADS  Google Scholar 

  20. Centurion, M., Pu, Y., Psaltis, D. & Hänsch, T. W. Holographic recording of laser-induced plasma. Opt. Lett. 29, 772–774 (2004).

    Article  ADS  Google Scholar 

  21. Dunne, M. et al. Experimental observations of the expansion of an optical-field-induced ionization channel in a gas jet target. Phys. Rev. Lett. 72, 1024–1027 (1994).

    Article  ADS  Google Scholar 

  22. Frasinski, L. J. et al. Femtosecond dynamics of multielectron dissociative ionization by use of picosecond laser. Phys. Rev. Lett. 58, 2424–2427 (1987).

    Article  ADS  Google Scholar 

  23. MacKinnon, A. J. et al. Proton radiography as an electromagnetic field and density perturbation diagnostic. Rev. Sci. Instrum. 75, 3531–3536 (2004).

    Article  ADS  Google Scholar 

  24. Li, C. K. et al. Measuring E and B fields in laser-produced plasmas with monoenergetic proton radiography. Phys. Rev. Lett. 97, 135003 (2006).

    Article  ADS  Google Scholar 

  25. Mackinnon, A. J. et al. Proton radiography of a laser-driven implosion. Phys. Rev. Lett. 97, 045001 (2006).

    Article  ADS  Google Scholar 

  26. Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  27. Lerner, P. B. & Cohen, J. S. Formation of hot electrons in noble gases by intense-field ionization: A quasistatic tunneling, independent-electron model. Phys. Rev. A 51, 1464–1470 (1995).

    Article  ADS  Google Scholar 

  28. Atzeni, S. & Meyer-Ter-Vehn, J. The Physics of Inertial Fusion 132–133 (Clarendon Oxford, 2004).

    Book  Google Scholar 

Download references


This work was funded in part by Deutsche Forschungsgemeinschaft (DFG) under contract SFB Transregio 6039 and by the DFG Cluster of Excellence ‘Munich Centre for Advanced Photonics’ (MAP; M.C. is supported by a research fellowship from the Alexander von Humboldt Foundation. P.R. is supported by a scholarship from the International Max Planck Research School on Advanced Photon Science (IMPRS–APS; S.A.T. thanks the Deutsche Forschungsgemeinschaft for a research fellowship (project FU 363/1).

Author information

Authors and Affiliations



Martin Centurion and Peter Reckenthaeler contributed equally to this work.

Corresponding authors

Correspondence to Martin Centurion or Peter Reckenthaeler.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Centurion, M., Reckenthaeler, P., Trushin, S. et al. Picosecond electron deflectometry of optical-field ionized plasmas. Nature Photon 2, 315–318 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing