Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Omnidirectional absorption in nanostructured metal surfaces


Light absorbers available at present provide far from optimal black-body performance. The need for more efficient absorbers is particularly acute on the microscale, where they can play a significant role in preventing crosstalk between optical interconnects, and also as thermal light-emitting sources. Several efforts have been made in this context to achieve near-total but directionally dependent absorption using periodic grating structures1,2,3,4,5,6,7. However, the ability to absorb light completely for any incident direction of light remains a challenge. Here we show that total omnidirectional absorption of light can be achieved in nanostructured metal surfaces that sustain localized optical excitations. The effect is realized over a full range of incident angles and can be tuned throughout the visible and near-infrared regimes by scaling the nanostructure dimensions. We suggest that surfaces displaying omnidirectional absorption will play a key role in devising efficient photovoltaic cells in which the absorbed light leads to electron–hole pair production.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Total light absorption in nanostructured metal surfaces.
Figure 2: Omnidirectional light absorption.


  1. Maystre, D. & Petit, R. Brewster incidence for metallic gratings. Opt. Commun. 17, 196–200 (1976).

    Article  ADS  Google Scholar 

  2. Hutley, M. C. & Maystre, D. The total absorption of light by a diffraction grating. Opt. Commun. 19, 431–436 (1976).

    Article  ADS  Google Scholar 

  3. Nevière, M., Maystre, D., MacPhedran, R., Derrick, G. & Hutley, M. in Proc. ICO-11 Conf. Madrid, Spain, 609–612 (1978).

    Google Scholar 

  4. Derrick, G. H., McPhedran, R. C., Maystre, D. & Nevière, M. Crossed gratings: A theory and its applications. Appl. Phys. 18, 39–52 (1979).

    Article  ADS  Google Scholar 

  5. Greffet, J.-J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).

    Article  ADS  Google Scholar 

  6. Collin, S., Pardo, F., Teissier, R. & Pelouard, J. L. Efficient light absorption in metal-semiconductor-metal nanostructures. Appl. Phys. Lett. 85, 194–196 (2004).

    Article  ADS  Google Scholar 

  7. Bliokh, Y. P., Felsteiner, J. & Slutsker, Y. Z. Total absorption of an electromagnetic wave by an overdense plasma. Phys. Rev. Lett. 95, 165003 (2005).

    Article  ADS  Google Scholar 

  8. Kohlschutter, V. & Toropoff, T. Information on the forms of electrolytically precipitated metals. i Black silver. Z. Elektrochem. Angew. Chem. 19, 161–168 (1913).

    Google Scholar 

  9. Hunderi, O. & Myers, H. P. Optical absorption in partially disordered silver films. J. Phys. F 3, 683–690 (1973).

    Article  ADS  Google Scholar 

  10. Wang, C. M., Chen, Y. C., Lee, M. S. & Chen, K. J. Microstructure and absorption property of silver-black coatings. Jpn J. Appl. Phys. Part 1 39, 551–554 (2000).

    Article  Google Scholar 

  11. Kachan, S., Stenzel, O. & Ponyavina, A. High-absorbing gradient multilayer coatings with silver nanoparticles. Appl. Phys. B 84, 281–287 (2006).

    Article  ADS  Google Scholar 

  12. Clapham, P. B. & Hutley, M. C. Reduction of lens reflexion by the ‘moth eye’ principle Nature 244, 281–282 (1973).

    Article  ADS  Google Scholar 

  13. Popov, E. & Tsonev, L. Comment on ‘Resonant electric field enhancement in the vicinity of a bare metallic grating exposed to s-polarized light by A. A. Maradudin and A. Wirgin’. Surf. Sci. Lett. 271, L378–L382 (1992).

    Article  ADS  Google Scholar 

  14. Popov, E., Tsonev, L. & Maystre, D. Lamellar metallic grating anomalies. Appl. Opt. 33, 5214–5219 (1994).

    Article  ADS  Google Scholar 

  15. Tan, W. C., Sambles, J. R. & Preist, T. W. Double-period zero-order metal gratings as effective selective absorbers. Phys. Rev. B 61, 13177–13182 (2000).

    Article  ADS  Google Scholar 

  16. Teperik, T. V., Popov, V. V. & García de Abajo, F. J. Void plasmons and total absorption of light in nanoporous metallic films. Phys. Rev. B 71, 085408 (2005).

    Article  ADS  Google Scholar 

  17. Abdelsalam, M. E., Bartlett, P. N., Baumberg, J. J. & Coyle, S. Preparation of arrays of isolated spherical cavities by self-assembly of polystyrene spheres on self-assembled pre-patterned macroporous films. Adv. Mater. 16, 90–93 (2004).

    Article  Google Scholar 

  18. Sham, L. J. Localized plasmons. Solid State Commun. 5, xix (1967).

    Article  Google Scholar 

  19. Pillai, S., Catchpole, K. R., Trupke, T. & Green, M. A. Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 093105 (2007).

    Article  ADS  Google Scholar 

  20. Cole, R. M. et al. Understanding plasmons in nanoscale voids. Nano Lett. 7, 2094–2100 (2007).

    Article  ADS  Google Scholar 

  21. Stefanou, N., Yannopapas, V. & Modinos, A. Heterostructures of photonic crystals: Frequency bands and transmission coefficients. Comput. Phys. Commun. 113, 49–77 (1998).

    Article  ADS  MATH  Google Scholar 

  22. Stefanou, N., Yannopapas, V. & Modinos, A. Multem 2: A new version of the program for transmission and band-structure calculations of photonic crystals. Comput. Phys. Commun. 132, 189–196 (2000).

    Article  ADS  MATH  Google Scholar 

  23. Jackson, J. D. Classical Electrodynamics (Wiley, New York, 1999).

    MATH  Google Scholar 

  24. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  ADS  Google Scholar 

  25. Raether, H. Springer Tracts in Modern Physics: Surface Plasmons on Smooth and Rough Surfaces and on Gratings Vol. 111 (Springer, Berlin, 1988).

    Book  Google Scholar 

  26. Teperik, T. V. et al. Strong coupling of light to flat metals via a buried nanovoid lattice: The interplay of localized and free plasmons. Opt. Express 14, 1965–1972 (2006).

    Article  ADS  Google Scholar 

  27. Kelf, T. A. et al. Localized and delocalized plasmons in metallic nanovoids. Phys. Rev. B 74, 245415 (2006).

    Article  ADS  Google Scholar 

  28. Reif, F. Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965).

Download references


The authors would like to thank V. Popov for valuable suggestions and fruitful discussions. This work was supported by the Spanish Ministerio de Educación y Ciencia (MEC), under contract MAT2007-66050, the EU-FP6, under contract NMP4-2006-016881 ‘SPANS’, the Russian Academy of Sciences, Russian Foundation for Basic Research (grant 07-02-91011), and the UK Engineering and Physical Sciences Research Council (EPSRC) NanoPhotonics Portfolio EP/C511786/1.

Author information

Authors and Affiliations


Corresponding author

Correspondence to F. J. García de Abajo.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Teperik, T., García de Abajo, F., Borisov, A. et al. Omnidirectional absorption in nanostructured metal surfaces. Nature Photon 2, 299–301 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing