Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental demonstration of frequency-agile terahertz metamaterials

Abstract

Metamaterials exhibit numerous novel effects1,2,3,4,5 and operate over a large portion of the electromagnetic spectrum6,7,8,9,10. Metamaterial devices based on these effects include gradient-index lenses11,12, modulators for terahertz radiation13,14,15 and compact waveguides16. The resonant nature of metamaterials results in frequency dispersion and narrow bandwidth operation where the centre frequency is fixed by the geometry and dimensions of the elements comprising the metamaterial composite. The creation of frequency-agile metamaterials would extend the spectral range over which devices function and, further, enable the manufacture of new devices such as dynamically tunable notch filters. Here, we demonstrate such frequency-agile metamaterials operating in the far-infrared by incorporating semiconductors in critical regions of metallic split-ring resonators. For this first-generation device, external optical control results in tuning of the metamaterial resonance frequency by 20%. Our approach is integrable with current semiconductor technologies and can be implemented in other regions of the electromagnetic spectrum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning electron microscopy images of the frequency-tunable planar metamaterial.
Figure 2: Terahertz electric-field transmission amplitude of the metamaterial shown in Fig. 1.
Figure 3: Schematic of inductively tuned metamaterial designs.
Figure 4: Simulated THz electric-field transmission amplitude of metamaterial designs presented in Fig. 3.

Similar content being viewed by others

References

  1. Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ɛ and μ. Sov. Phys. Usp. 10, 509–514 (1968).

    Article  ADS  Google Scholar 

  2. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article  ADS  Google Scholar 

  3. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  ADS  Google Scholar 

  4. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    Article  ADS  Google Scholar 

  5. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  6. Wiltshire, M. C. K. et al. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. Science 291, 849–851 (2001).

    Article  ADS  Google Scholar 

  7. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).

    Article  ADS  Google Scholar 

  8. Yen, T. J. et al. Terahertz magnetic response from artificial materials. Science 303, 1494–1496 (2004).

    Article  ADS  Google Scholar 

  9. Soukoulis, C. M., Linden, S. & Wegener, M. Negative refractive index at optical wavelengths. Science 315, 47–49 (2007).

    Article  Google Scholar 

  10. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    Article  ADS  Google Scholar 

  11. Smith, D. R., Mock, J. J., Starr, A. F. & Schurig, D. Gradient index metamaterials. Phys. Rev. E 71, 036609 (2005).

    Article  ADS  Google Scholar 

  12. Greegor, R. B. et al. Simulation and testing of a graded negative index of refraction lens. Appl. Phys. Lett. 87, 091114 (2005).

    Article  ADS  Google Scholar 

  13. Padilla, W. J., Taylor, A. J., Highstrete, C., Lee, M. & Averitt, R. D. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys. Rev. Lett. 96, 107401 (2006).

    Article  ADS  Google Scholar 

  14. Chen, H.-T. et al. Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices. Opt. Lett. 32, 1620–1622 (2007).

    Article  ADS  Google Scholar 

  15. Chen, H.-T. et al. Active terahertz metamaterial devices. Nature 444, 597–600 (2006).

    Article  ADS  Google Scholar 

  16. Alù, A. & Engheta, N. Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers. IEEE Trans. Microwave Theory Techniques 52, 199–210 (2004).

    Article  ADS  Google Scholar 

  17. Gil, I. et al. Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies. Electron. Lett. 40, 1347–1348 (2004).

    Article  Google Scholar 

  18. Gil, I., Bonache, J., García-García, J. & Martín, F. Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators. IEEE Trans. Microwave Theory Techniques 54, 2665–2674 (2006).

    Article  ADS  Google Scholar 

  19. Lim, S., Caloz, C. & Itoh, T. Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth. IEEE Trans. Microwave Theory Techniques 52, 2678–2690 (2004).

    Article  ADS  Google Scholar 

  20. Kim, H., Ho, S.-J., Choi, M.-K., Kozyrev, A. B. & van der Weide, D. W. Combined left- and right-handed tunable transmission lines with tunable passband and 0° phase shift. IEEE Trans. Microwave Theory Techniques 54, 4178–4184 (2006).

    Article  ADS  Google Scholar 

  21. Degiron, A., Mock, J. J. & Smith, D. R. Modulating and tuning the response of metamaterials at the unit cell level. Opt. Express 15, 1115–1127 (2007).

    Article  ADS  Google Scholar 

  22. Schurig, D., Mock, J. J. & Smith, D. R. Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett. 88, 041109 (2006).

    Article  ADS  Google Scholar 

  23. Padilla, W. J. et al. Electrically resonant terahertz metamaterials: Theoretical and experimental investigations. Phys. Rev. B 75, 041102(R) (2007).

    Article  ADS  Google Scholar 

  24. Chen, H.-T. et al. Complementary planar terahertz metamaterials. Opt. Express 15, 1084–1095 (2007).

    Article  ADS  Google Scholar 

  25. Averitt, R. D. & Taylor, A. J. Ultrafast optical and far-infrared quasiparticle dynamics in correlated electron materials. J. Phys. Condens. Matter. 14, R1357–R1390 (2002).

    Article  ADS  Google Scholar 

  26. Sze, S. M. Physics of Semiconductor Devices (Wiley, Hoboken, New Jersey, 2007).

  27. CST Studio Suite 2006B <http://www.cst.com>.

  28. Grischkowsky, D., Keiding, S., van Exter, M. & Fattinger, C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B 7, 2006–2015 (1990).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Los Alamos National Laboratory LDRD Program. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences nanoscale science research centre operated jointly by Los Alamos and Sandia National Laboratories. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Security administration of the US Department of Energy under contract DE-AC52-06NA25396. D.B.S. and W.J.P. acknowledge support from the Office of Naval Research (ONR), grant N000140710819. H.-T.C. would also like to acknowledge E. Akhadov for the SEM imaging, and stimulating discussions with K. Burch and A. Findikoglu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hou-Tong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, HT., O'Hara, J., Azad, A. et al. Experimental demonstration of frequency-agile terahertz metamaterials. Nature Photon 2, 295–298 (2008). https://doi.org/10.1038/nphoton.2008.52

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.52

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing