Abstract
One of the major advantages of Raman lasers is their ability to generate coherent light in wavelength regions that are not easily accessible with other conventional types of lasers1. Recently, efficient Raman lasing in silicon in the near-infrared region has been demonstrated2,3,4, showing great potential for realizing low-cost, compact, room-temperature lasers in the mid-infrared region5,6,7. Such lasers are highly desirable for many applications, ranging from trace-gas sensing, environmental monitoring and biomedical analysis, to industrial process control, and free-space communications8,9. Here we report the first experimental demonstration of cascaded Raman lasing in silicon, opening the path to extending the lasing wavelength from the near- to mid-infrared region. Using a 1,550-nm pump source, we achieve stable, continuous-wave, second-order cascaded lasing at 1,848 nm with an output power exceeding 5 mW. The laser operates in single mode, and the laser linewidth is measured to be <2.5 MHz.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Suppressing non-radiative recombination in metal halide perovskite solar cells by synergistic effect of ferroelasticity
Nature Communications Open Access 17 January 2023
-
Broadband high-Q multimode silicon concentric racetrack resonators for widely tunable Raman lasers
Nature Communications Open Access 20 June 2022
-
Narrow-band random Raman lasing from Rhodamine 6G assisted by cascaded stimulated Raman scattering effect
Scientific Reports Open Access 05 November 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Pask, H. M. The design and operation of solid-state Raman lasers. Prog. Quantum Electron. 27, 3–56 (2003).
Boyraz, O. & Jalali, B. Demonstration of a silicon Raman laser. Opt. Express 12, 5269–5273 (2004).
Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).
Rong, H. et al. Low-threshold continuous-wave Raman silicon laser. Nature Photon. 1, 232–237 (2007).
Jalali, B. et al. Prospects for silicon mid-IR Raman lasers. IEEE J. Sel. Top. Quant. Electron. 12, 1618–1627 (2006).
Vermeulen, N., Debaes, C. & Thienpont, H. Modeling mid-infrared continuous-wave silicon-based Raman lasers. Proc. SPIE 6455, 64550U (2007).
Krause, M., Draheim, R., Renner, H. & Brinkmeyer, E. Cascaded silicon Raman lasers as mid-infrared sources. Electron. Lett. 42, 1224–1226 (2006).
Solid-State Mid-Infrared Laser Sources (eds Sorokina, I. T. & Vodopyanov, K. L.) (Springer, Berlin/Heidelberg, 2003).
Long-Wavelength Infrared Semiconductor Lasers (ed. Choi, H. K.) (Wiley, Hoboken, 2004).
Grubb, S. G. et al. in Optical Amplifiers and Amplifications, Vol. 18, 197–199 (Optical Society of America, Washington, DC, 1995).
Naeini, J. G. & Ahmad, K. Raman fiber laser with two parallel couplers. Opt. Eng. 44, 064203 (2005).
Spillane, S. M., Kippenberg, T. J. & Vahala, K. J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415, 621–623 (2002).
Min, B. K., Kippenberg, T. J. & Vahala, K. J. Compact, fiber-compatible, cascaded Raman laser. Opt. Lett. 28, 1507–1509 (2003).
Kippenberg, T. J., Spillane, S. M., Armani, D. K. & Vahala, K. J. Ultralow threshold microcavity Raman laser on a microelectronic chip. Opt. Lett. 29, 1224–1226 (2004).
Kippenberg, T. J., Spillane, S. M., Min, B. & Vahala, K. J. Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities. IEEE J. Sel. Top. Quant. Electron. 10, 1219–1228 (2004).
Soref, R. A., Emelett, S. J. & Buchwald, W. R. Silicon waveguided components for the long-wave infrared region. J. Opt. A 8, 840–848 (2006).
Tittel, F. K., Richter, D. & Fried, A. Mid-infrared laser applications in spectroscopy, in Solid-State Mid-Infrared Laser Sources (eds Sorokina, I. T. & Vodopyanov, K. L. ) 445–510 (Springer, Berlin/Heidelberg, 2003).
Rothman, L. S. et al. The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
Fischer, C. & Sigrist, M. W. Mid-IR difference frequency generation, in Solid-State Mid-Infrared Laser Sources (eds Sorokina, I. T. & Vodopyanov, K. L. ) 97–140 (Springer, Berlin/Heidelberg, 2003).
Ebrahimzadeh, M. Mid-infrared ultrafast and continuous-wave optical parametric oscillators, in Solid-State Mid-Infrared Laser Sources (eds, Sorokina, I. T. & Vodopyanov, K. L. ) 179–218 (Springer, Berlin/Heidelberg, 2003).
Sirtori, C. et al. Quantum cascade lasers: The semiconductor solution for lasers in the mid- and far-infrared spectral regions. Phys. Stat. Sol. 203, 3533–3537 (2006).
Devenson, J., Barate, D., Cathabard, O., Teissier, R. & Baranov A. N. Very short wavelength (λ = 3.1–3.3 µm) quantum cascade lasers. Appl. Phys. Lett. 89, 191115 (2006).
Kaplan, A. Modeling of ring resonators with tunable couplers. IEEE J. Sel. Top. Quant. Electron. 12, 86–95 (2006).
Liang, T. K. & Tsang, H. K. Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides. Appl. Phys. Lett. 84, 2745–2747 (2004).
Rong, H. et al. Raman gain and nonlinear optical absorption measurement in a low loss silicon waveguide. Appl. Phys. Lett. 85, 2196–2198 (2004).
Claps, R., Raghunathan, V., Dimitropoulos, D. & Jalali, B. Role of nonlinear absorption on Raman amplification in Silicon waveguides. Opt. Express 12, 2774–2780 (2004).
Acknowledgements
We thank Y.-H. Kuo for contributions in ring resonator development; A. Alduino, D. Tran, J.C. Jimenez, N. Izhaky, N. Ziharev and J. Ngo for assistance in device fabrication and sample preparation; W.B. Chapman for helpful suggestions regarding molecular spectroscopy; and R. Jones, A. Liu, J. Doylend, G.T. Reed and J.E. Bowers for technical discussions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rong, H., Xu, S., Cohen, O. et al. A cascaded silicon Raman laser. Nature Photon 2, 170–174 (2008). https://doi.org/10.1038/nphoton.2008.4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2008.4
This article is cited by
-
Suppressing non-radiative recombination in metal halide perovskite solar cells by synergistic effect of ferroelasticity
Nature Communications (2023)
-
Broadband high-Q multimode silicon concentric racetrack resonators for widely tunable Raman lasers
Nature Communications (2022)
-
High-Q microresonators on 4H-silicon-carbide-on-insulator platform for nonlinear photonics
Light: Science & Applications (2021)
-
Narrow-band random Raman lasing from Rhodamine 6G assisted by cascaded stimulated Raman scattering effect
Scientific Reports (2021)
-
Numerical design and frequency response of MQW transistor lasers based entirely on group IV alloys
Journal of Computational Electronics (2021)