Abstract
Femtosecond laser micromachining can be used either to remove materials or to change a material's properties, and can be applied to both absorptive and transparent substances. Over the past decade, this technique has been used in a broad range of applications, from waveguide fabrication to cell ablation. This review describes the physical mechanisms and the main experimental parameters involved in the femtosecond laser micromachining of transparent materials, and important emerging applications of the technology.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Du, D., Liu, X., Korn, G., Squier, J. & Mourou, G. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs. Appl. Phys. Lett. 64, 3071–3073 (1994).
Pronko, P. P. et al. Machining of submicron holes using a femtosecond laser at 800-nm. Opt. Commun. 114, 106–110 (1995).
Joglekar, A. P. et al. A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining. Appl. Phys. B 77, 25–30 (2003).
Chimmalgi, A., Choi, T. Y., Grigoropoulos, C. P. & Komvopoulos, K. Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy. Appl. Phys. Lett. 82, 1146–1148 (2003).
Backus, S., Durfee III, C. G., Murnane, M. M. & Kapteyn, H. C. High power ultrafast lasers. Rev. Sci. Instrum. 69, 1207–1223 (1998).
Keller, U. Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003).
Brabec, T. & Krausz, F. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).
Steinmeyer, G., Sutter, D. H., Gallmann, L., Matuschek, N. & Keller, U. Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics. Science 286, 1507–1512 (1999).
Boyd, R. W. Nonlinear optics 2nd edn (Academic, Amsterdam, 2003).
Kruger, J. & Kautek, W. in Polymers and Light Vol. 168 (ed. Lippert, T.) 247–289 (Springer, Berlin, 2004).
Dausinger, F., Lichtner, F. & Lubatschowski, H. Femtosecond Technology for Technical and Medical Applications (Springer, Berlin, 2004).
Bloembergen, N. A brief history of light breakdown. J. Nonlinear Opt. Phys. 6, 377–385 (1997).
Schaffer, C. B., Brodeur, A. & Mazur, E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly-focused femtosecond laser pulses. Meas. Sci. Technol. 12, 1784–1794 (2001).
Glezer, E. N. et al. Three-dimensional optical storage inside transparent materials. Opt. Lett. 21, 2023–2025 (1996).
Stuart, B. C., Feit, M. D., Rubenchik, A. M., Shore, B. W. & Perry, M. D. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett. 74, 2248–2251 (1995).
Stuart, B. C. et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 53, 1749–1761 (1996).
Bloembergen, N. Laser-induced electric breakdown in solids. IEEE J. Sel. Top. Quant. Electron. 10, 375–386 (1974).
Schaffer, C. B., Nishimura, N., Glezer, E. N., Kim, A. M. T. & Mazur, E. Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds. Opt. Express 10, 196–203 (2002).
Sakakura, M. & Terazima, M. Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass. Phys. Rev. B 71, 024113 (2005).
Sakakura, M., Terazima, M., Shimotsuma, Y., Miura, K. & Hirao, K. Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass. Opt. Express 15, 5674–5686 (2007).
Sundaram, S. K. & Mazur, E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nature Mater. 1, 217–224 (2002).
Chichkov, B. N., Momma, C., Nolte, S., von Alvensleben, F. & Tunnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109–115 (1996).
Liu, X., Du, D. & Mourou, G. Laser ablation and micromachining with ultrashort laser pulses. IEEE J. Sel. Top. Quant. Electron. 33, 1706–1716 (1997).
Ashcom, J. B., Gattass, R. R., Schaffer, C. B. & Mazur, E. Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica. J. Opt. Soc. Am. B 23, 2317–2322 (2006).
Tien, A. C., Backus, S., Kapteyn, H., Murnane, M. & Mourou, G. Short-pulse laser damage in transparent materials as a function of pulse duration. Phys. Rev. Lett. 82, 3883–3886 (1999).
Streltsov, A. M. & Borrelli, N. F. Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses. Opt. Lett. 26, 42–43 (2001).
Will, M., Nolte, S., Chichkov, B. N. & Tunnermann, A. Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses. Appl. Opt. 41, 4360–4364 (2002).
Florea, C. & Winick, K. A. Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses. J. Lightwave Tech. 21, 246–253 (2003).
Osellame, R. et al. Optical properties of waveguides written by a 26 MHz stretched cavity Ti: sapphire femtosecond oscillator. Opt. Express 13, 612–620 (2005).
Miura, K., Qiu, J. R., Inouye, H., Mitsuyu, T. & Hirao, K. Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl. Phys. Lett. 71, 3329–3331 (1997).
Bruckner, R. Properties and structure of vitreous silica. I. J. Non-Cryst. Solids 5, 123 (1970).
Glezer, E. N. & Mazur, E. Ultrafast-laser driven micro-explosions in transparent materials. Appl. Phys. Lett. 71, 882–884 (1997).
Chan, J. W., Huser, T., Risbud, S. & Krol, D. M. Structural changes in fused silica after exposure to focused femtosecond laser pulses. Opt. Lett. 26, 1726–1728 (2001).
Streltsov, A. M. & Borrelli, N. F. Study of femtosecond-laser-written waveguides in glasses. J. Opt. Soc. Am. B 19, 2496–2504 (2002).
Schaffer, C. B., Garcia, J. F. & Mazur, E. Bulk heating of transparent materials using a high repetition-rate femtosecond laser. Appl. Phys. A 76, 351–354 (2003).
Sudrie, L., Franco, M., Prade, B. & Mysyrowicz, A. Study of damage in fused silica induced by ultra-short IR laser pulses. Opt. Commun. 191, 333–339 (2001).
Shimotsuma, Y., Kazansky, P. G., Qiu, J. R. & Hirao, K. Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91, 247405 (2003).
Bricchi, E., Klappauf, B. G. & Kazansky, P. G. Form birefringence and negative index change created by femtosecond direct writing in transparent materials. Opt. Lett. 29, 119–121 (2004).
Kazansky, P. G. et al. “Quill” writing with ultrashort light pulses in transparent materials. Appl. Phys. Lett. 90, 151120 (2007).
Rajeev, P. P. et al. Transient nanoplasmonics inside dielectrics. J. Phys. B 40, S273–S282 (2007).
Brodeur, A. & Chin, S. L. Band-gap dependence of the ultrafast white-light continuum. Phys. Rev. Lett. 80, 4406–4409 (1998).
Marburger, J. H. Self-focusing: Theory. Prog. Quant. Electron. 4, 35–110 (1975).
Shen, Y. R. Self-focusing: Experimental. Prog. Quant. Electron. 4, 1–34 (1975).
Alfano, R. R. & Shapiro, S. L. Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592–594 (1970).
Nguyen, N. T., Saliminia, A., Liu, W., Chin, S. L. & Vallee, R. Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses. Opt. Lett. 28, 1591–1593 (2003).
Homoelle, D., Wielandy, S., Gaeta, A. L., Borrelli, N. F. & Smith, C. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses. Opt. Lett. 24, 1311–1313 (1999).
Kamata, M. & Obara, M. Control of the refractive index change in fused silica glasses induced by a loosely focused femtosecond laser. Appl. Phys. A 78, 85–88 (2004).
Schaffer, C. B., Brodeur, A., Garcia, J. F. & Mazur, E. Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt. Lett. 26, 93–95 (2001).
Eaton, S. M. et al. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt. Express 13, 4708–4716 (2005).
Cheng, G. H., Wang, Y. S., Liu, Q., Zhao, W. & Chen, G. F. Study of three-dimensional storage by parallel writing in PMMA with femtosecond laser pulses. Acta Phys. Sinica 53, 436–440 (2004).
Osellame, R. et al. Femtosecond writing of active optical waveguides with astigmatically shaped beams. J. Opt. Soc. Am. B 20, 1559–1567 (2003).
Zoubir, A., Lopez, C., Richardson, M. & Richardson, K. Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate). Opt. Lett. 29, 1840–1842 (2004).
Sowa, S., Watanabe, W., Tamaki, T., Nishii, J. & Itoh, K. Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses. Opt. Express 14, 291–297 (2006).
Davis, K. M., Miura, K., Sugimoto, N. & Hirao, K. Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731 (1996).
Takeshi, F., Shimon, I., Tomoko, F., Ken, S. & Hideyuki, H. in Photon Processing in Microelectronics and Photonics III, SPIE, San Jose, California 5339, 524–538 (2004).
Shah, L., Arai, A. Y., Eaton, S. M. & Herman, P. R. Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate. Opt. Express 13, 1999–2006 (2005).
Zhang, H., Eaton, S. M. & Herman, P. R. Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses. Opt. Express 14, 4826–4834 (2006).
Tong, L. M., Gattass, R. R., Maxwell, I., Ashcom, J. B. & Mazur, E. Optical loss measurements in femtosecond laser written waveguides in glass. Opt. Commun. 259, 626–630 (2006).
Bhardwaj, V. R. et al. Femtosecond laser-induced refractive index modification in multicomponent glasses. J. Appl. Phys. 97, 083102 (2005).
Nolte, S., Will, M., Burghoff, J. & Tuennermann, A. Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics. Appl. Phys. A 77, 109–111 (2003).
Kamata, M., Obara, M., Gattass, R. R., Cerami, L. R. & Mazur, E. Optical vibration sensor fabricated by femtosecond laser micromachining. Appl. Phys. Lett. 87, 051106 (2005).
Sikorski, Y. et al. Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses. Electron. Lett. 36, 226–227 (2000).
Osellame, R. et al. Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses. Electron. Lett. 38, 964–965 (2002).
Della Valle, G. et al. C-band waveguide amplifier produced by femtosecond laser writing. Opt. Express 13, 5976–5982 (2005).
Taccheo, S. et al. Er: Yb-doped waveguide laser fabricated by femtosecond laser pulses. Opt. Lett. 29, 2626–2628 (2004).
Gui, L., Xu, B. X. & Chong, T. C. Microstructure in lithium niobate by use of focused femtosecond laser pulses. IEEE Photon. Tech. Lett. 16, 1337–1339 (2004).
Burghoff, J., Grebing, C., Nolte, S. & Tünnermann, A. Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate. Appl. Phys. Lett. 89, 081108 (2006).
Shih, T., Gattass, R. R., Mendonca, C. R. & Mazur, E. Faraday rotation in femtosecond laser micromachined waveguides. Opt. Express 15, 5809–5814 (2007).
Minoshima, K., Kowalevicz, A. M., Hartl, I., Ippen, E. P. & Fujimoto, J. G. Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator. Opt. Lett. 26, 1516–1518 (2001).
Minoshima, K., Kowalevicz, A. M., Ippen, E. P. & Fujimoto, J. G. Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing. Opt. Express 10, 645–652 (2002).
Kowalevicz, A. M., Sharma, V., Ippen, E. P., Fujimoto, J. G. & Minoshima, K. Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator. Opt. Lett. 30, 1060–1062 (2005).
Marshall, G. D., Ams, M. & Withford, M. J. Direct laser written waveguide-Bragg gratings in bulk fused silica. Opt. Lett. 31, 2690–2691 (2006).
Zhang, H. B., Eaton, S. M., Li, J. Z., Nejadmalayeri, A. H. & Herman, P. R. Type II high-strength Bragg grating waveguides photowritten with ultrashort laser pulses. Opt. Express 15, 4182–4191 (2007).
Zhang, H., Eaton, S. M. & Herman, P. R. Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser. Opt. Lett. 32, 2559–2561 (2007).
Kondo, Y. et al. Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses. Opt. Lett. 24, 646–648 (1999).
Fertein, E. et al. Refractive-index changes of standard telecommunication fiber through exposure to femtosecond laser pulses at 810 cm. Appl. Opt. 40, 3506–3508 (2001).
Martinez, A., Dubov, M., Khrushchev, I. & Bennion, I. Direct writing of fibre Bragg gratings by femtosecond laser. Electron. Lett. 40, 1170–1172 (2004).
Wikszak, E. et al. Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating. Opt. Lett. 31, 2390–2392 (2006).
Nikogosyan, D. N. Multi-photon high-excitation-energy approach to fibre grating inscription. Meas. Sci. Technol. 18, R1–R29 (2007).
Sun, H. B. & Kawata, S. in NMR - 3D Analysis - Photopolymerization Vol. 170 (ed. Lee, S.-K.) 169–273 (Springer, Berlin, 2004).
Maruo, S., Nakamura, O. & Kawata, S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22, 132–134 (1997).
Kawata, S., Sun, H. B., Tanaka, T. & Takada, K. Finer features for functional microdevices. Nature 412, 697–698 (2001).
LaFratta, C. N., Fourkas, J. T., Baldacchini, T. & Farrer, R. A. Multiphoton Fabrication. Angew. Chem. Int. Edn 46, 6238–6258 (2007).
Sun, H. B., Matsuo, S. & Misawa, H. Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin. Appl. Phys. Lett. 74, 786–788 (1999).
Deubel, M. et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nature Mater. 3, 444–447 (2004).
Berns, M. W., Olson, R. S. & Rounds, D. E. In vitro production of chromosomal lesions with an argon laser microbeam. Nature 221, 74–75 (1969).
Liang, H., Wright, W. H., Cheng, S., He, W. & Berns, M. W. Micromanipulation of chromosomes in Ptk2 cells using laser microsurgery (optical scalpel) in combination with laser-induced optical force (optical tweezers). Exp. Cell Res. 204, 110–120 (1993).
Berns, M. W. et al. Laser micro-surgery in cell and developmental biology. Science 213, 505–513 (1981).
Vogel, A., Noack, J., Huttman, G. & Paltauf, G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B 81, 1015–1047 (2005).
König, K., Riemann, I., Fischer, P. & Halbhuber, K. H. Intracellular nanosurgery with near infrared femtosecond laser pulses. Cell. Mol. Biol. 45, 195–201 (1999).
Watanabe, W. et al. Femtosecond laser disruption of subcellular organelles in a living cell. Opt. Express 12, 4203–4213 (2004).
Shen, N. et al. Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor. Mech. Chem. Biosystems 2, 17–25 (2005).
Supatto, W. et al. In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses. Proc. Natl Acad. Sci. USA 102, 1047–1052 (2005).
Yanik, M. F. et al. Functional regeneration after laser axotomy. Nature 432, 822 (2004).
Chung, S. H., Clark, D. A., Gabel, C. V., Mazur, E. & Samuel, A. D. T. The role of the AFD neuron in C-elegans thermotaxis analyzed using femtosecond laser ablation. Bmc Neuroscience 7, 30 (2006).
Watanabe, W., Onda, S., Tamaki, T., Itoh, K. & Nishii, J. Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses. Appl. Phys. Lett. 89, 021106 (2006).
Tamaki, T., Watanabe, W., Nishii, J. & Itoh, K. Welding of transparent materials using femtosecond laser pulses. Jpn J. Appl. Phys. 44, L687–L689 (2005).
Watanabe, W., Onda, S., Tamaki, T. & Itoh, K. Direct joining of glass substrates by 1 kHz femtosecond laser pulses. Appl. Phys. B 87, 85–89 (2007).
Tamaki, T., Watanabe, W. & Itoh, K. Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm. Opt. Express 14, 10460–10468 (2006).
Miura, K., Qiu, J. R., Mitsuyu, T. & Hirao, K. Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses. Opt. Lett. 25, 408–410 (2000).
Yu, B. et al. Study of crystal formation in borate, niobate, and titanate glasses irradiated by femtosecond laser pulses. J. Opt. Soc. Am. B 21, 83–87 (2004).
Miura, K., Qiu, J. R., Fujiwara, S., Sakaguchi, S. & Hirao, K. Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions. Appl. Phys. Lett. 80, 2263–2265 (2002).
Manz, A., Graber, N. & Widmer, H. M. Miniaturized total chemical-analysis systems - A novel concept for chemical sensing. Sens. Actuators B 1, 244–248 (1990).
Reyes, D. R., Iossifidis, D., Auroux, P. A. & Manz, A. Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 74, 2623–2636 (2002).
Auroux, P. A., Iossifidis, D., Reyes, D. R. & Manz, A. Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem. 74, 2637–2652 (2002).
Marcinkevicius, A. et al. Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt. Lett. 26, 277–279 (2001).
Kondo, Y., Qiu, J., Mitsuyu, T., Hirao, K. & Yoko, T. Three-dimensional microdrilling of glass by multiphoton process and chemical etching. Jpn J. Appl. Phys. 38, L1146–L1148 (1999).
Masuda, M. et al. 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Appl. Phys. A 76, 857–860 (2003).
Maselli, V. et al. Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching. Appl. Phys. Lett. 88, 191107 (2006).
Chiodo, N. et al. Imaging of Bloch oscillations in erbium-doped curved waveguide arrays. Opt. Lett. 31, 1651–1653 (2006).
Szameit, A. et al. Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica. Opt. Express 14, 6055–6062 (2006).
Pierce, J. R. Coupling of modes of propagation. J. Appl. Phys. 25, 179–183 (1954).
Bellouard, Y., Said, A., Dugan, M. & Bado, P. Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt. Express 12, 2120–2129 (2004).
Acknowledgements
The authors would like to acknowledge C. R. Mendonca, J. Dowd, M. Haider-Syed and T. Baldacchini for input on the manuscript. The authors are supported by the Army Research Office under contract W911NF-05-1-0471.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Gattass, R., Mazur, E. Femtosecond laser micromachining in transparent materials. Nature Photon 2, 219–225 (2008). https://doi.org/10.1038/nphoton.2008.47
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2008.47
This article is cited by
-
Precise mode control of laser-written waveguides for broadband, low-dispersion 3D integrated optics
Light: Science & Applications (2024)
-
Possibility of CO2 laser-pumped multi-millijoule-level ultrafast pulse terahertz sources
Scientific Reports (2024)
-
Visual observation of photonic Floquet–Bloch oscillations
Light: Science & Applications (2024)
-
Research on picosecond laser-assisted polishing of K9 optical glass: investigation of processing parameters and physical mechanism
The International Journal of Advanced Manufacturing Technology (2024)
-
257 nm Deep UV Femtosecond Laser Ablation with Minimized Crack and Chipping on Display Ultra-Thin Glass
International Journal of Precision Engineering and Manufacturing (2024)