Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Femtosecond laser micromachining in transparent materials

Abstract

Femtosecond laser micromachining can be used either to remove materials or to change a material's properties, and can be applied to both absorptive and transparent substances. Over the past decade, this technique has been used in a broad range of applications, from waveguide fabrication to cell ablation. This review describes the physical mechanisms and the main experimental parameters involved in the femtosecond laser micromachining of transparent materials, and important emerging applications of the technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timescale of the physical phenomena associated with the interaction of a femtosecond laser pulse with transparent materials.
Figure 2: Bandgap dependence of the threshold fluence for femtosecond laser micromachining by pulses centred at a wavelength of 800 nm with a duration of 100 fs.
Figure 3: Photonic applications of femtosecond laser micromachining.
Figure 4: Example applications of femtosecond micromachining in biology, material processing and data storage.
Figure 5: Examples of microfluidic and rapid prototyping applications of femtosecond micromachining.

Similar content being viewed by others

References

  1. Du, D., Liu, X., Korn, G., Squier, J. & Mourou, G. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs. Appl. Phys. Lett. 64, 3071–3073 (1994).

    ADS  Google Scholar 

  2. Pronko, P. P. et al. Machining of submicron holes using a femtosecond laser at 800-nm. Opt. Commun. 114, 106–110 (1995).

    ADS  Google Scholar 

  3. Joglekar, A. P. et al. A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining. Appl. Phys. B 77, 25–30 (2003).

    Google Scholar 

  4. Chimmalgi, A., Choi, T. Y., Grigoropoulos, C. P. & Komvopoulos, K. Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy. Appl. Phys. Lett. 82, 1146–1148 (2003).

    ADS  Google Scholar 

  5. Backus, S., Durfee III, C. G., Murnane, M. M. & Kapteyn, H. C. High power ultrafast lasers. Rev. Sci. Instrum. 69, 1207–1223 (1998).

    ADS  Google Scholar 

  6. Keller, U. Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003).

    ADS  Google Scholar 

  7. Brabec, T. & Krausz, F. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).

    ADS  Google Scholar 

  8. Steinmeyer, G., Sutter, D. H., Gallmann, L., Matuschek, N. & Keller, U. Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics. Science 286, 1507–1512 (1999).

    Google Scholar 

  9. Boyd, R. W. Nonlinear optics 2nd edn (Academic, Amsterdam, 2003).

    Google Scholar 

  10. Kruger, J. & Kautek, W. in Polymers and Light Vol. 168 (ed. Lippert, T.) 247–289 (Springer, Berlin, 2004).

    Google Scholar 

  11. Dausinger, F., Lichtner, F. & Lubatschowski, H. Femtosecond Technology for Technical and Medical Applications (Springer, Berlin, 2004).

    Google Scholar 

  12. Bloembergen, N. A brief history of light breakdown. J. Nonlinear Opt. Phys. 6, 377–385 (1997).

    Google Scholar 

  13. Schaffer, C. B., Brodeur, A. & Mazur, E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly-focused femtosecond laser pulses. Meas. Sci. Technol. 12, 1784–1794 (2001).

    ADS  Google Scholar 

  14. Glezer, E. N. et al. Three-dimensional optical storage inside transparent materials. Opt. Lett. 21, 2023–2025 (1996).

    ADS  Google Scholar 

  15. Stuart, B. C., Feit, M. D., Rubenchik, A. M., Shore, B. W. & Perry, M. D. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett. 74, 2248–2251 (1995).

    ADS  Google Scholar 

  16. Stuart, B. C. et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 53, 1749–1761 (1996).

    ADS  Google Scholar 

  17. Bloembergen, N. Laser-induced electric breakdown in solids. IEEE J. Sel. Top. Quant. Electron. 10, 375–386 (1974).

    ADS  Google Scholar 

  18. Schaffer, C. B., Nishimura, N., Glezer, E. N., Kim, A. M. T. & Mazur, E. Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds. Opt. Express 10, 196–203 (2002).

    ADS  Google Scholar 

  19. Sakakura, M. & Terazima, M. Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass. Phys. Rev. B 71, 024113 (2005).

    ADS  Google Scholar 

  20. Sakakura, M., Terazima, M., Shimotsuma, Y., Miura, K. & Hirao, K. Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass. Opt. Express 15, 5674–5686 (2007).

    ADS  Google Scholar 

  21. Sundaram, S. K. & Mazur, E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nature Mater. 1, 217–224 (2002).

    ADS  Google Scholar 

  22. Chichkov, B. N., Momma, C., Nolte, S., von Alvensleben, F. & Tunnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109–115 (1996).

    ADS  Google Scholar 

  23. Liu, X., Du, D. & Mourou, G. Laser ablation and micromachining with ultrashort laser pulses. IEEE J. Sel. Top. Quant. Electron. 33, 1706–1716 (1997).

    ADS  Google Scholar 

  24. Ashcom, J. B., Gattass, R. R., Schaffer, C. B. & Mazur, E. Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica. J. Opt. Soc. Am. B 23, 2317–2322 (2006).

    ADS  Google Scholar 

  25. Tien, A. C., Backus, S., Kapteyn, H., Murnane, M. & Mourou, G. Short-pulse laser damage in transparent materials as a function of pulse duration. Phys. Rev. Lett. 82, 3883–3886 (1999).

    ADS  Google Scholar 

  26. Streltsov, A. M. & Borrelli, N. F. Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses. Opt. Lett. 26, 42–43 (2001).

    ADS  Google Scholar 

  27. Will, M., Nolte, S., Chichkov, B. N. & Tunnermann, A. Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses. Appl. Opt. 41, 4360–4364 (2002).

    ADS  Google Scholar 

  28. Florea, C. & Winick, K. A. Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses. J. Lightwave Tech. 21, 246–253 (2003).

    ADS  Google Scholar 

  29. Osellame, R. et al. Optical properties of waveguides written by a 26 MHz stretched cavity Ti: sapphire femtosecond oscillator. Opt. Express 13, 612–620 (2005).

    ADS  Google Scholar 

  30. Miura, K., Qiu, J. R., Inouye, H., Mitsuyu, T. & Hirao, K. Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl. Phys. Lett. 71, 3329–3331 (1997).

    ADS  Google Scholar 

  31. Bruckner, R. Properties and structure of vitreous silica. I. J. Non-Cryst. Solids 5, 123 (1970).

    ADS  Google Scholar 

  32. Glezer, E. N. & Mazur, E. Ultrafast-laser driven micro-explosions in transparent materials. Appl. Phys. Lett. 71, 882–884 (1997).

    ADS  Google Scholar 

  33. Chan, J. W., Huser, T., Risbud, S. & Krol, D. M. Structural changes in fused silica after exposure to focused femtosecond laser pulses. Opt. Lett. 26, 1726–1728 (2001).

    ADS  Google Scholar 

  34. Streltsov, A. M. & Borrelli, N. F. Study of femtosecond-laser-written waveguides in glasses. J. Opt. Soc. Am. B 19, 2496–2504 (2002).

    ADS  Google Scholar 

  35. Schaffer, C. B., Garcia, J. F. & Mazur, E. Bulk heating of transparent materials using a high repetition-rate femtosecond laser. Appl. Phys. A 76, 351–354 (2003).

    ADS  Google Scholar 

  36. Sudrie, L., Franco, M., Prade, B. & Mysyrowicz, A. Study of damage in fused silica induced by ultra-short IR laser pulses. Opt. Commun. 191, 333–339 (2001).

    ADS  Google Scholar 

  37. Shimotsuma, Y., Kazansky, P. G., Qiu, J. R. & Hirao, K. Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91, 247405 (2003).

    ADS  Google Scholar 

  38. Bricchi, E., Klappauf, B. G. & Kazansky, P. G. Form birefringence and negative index change created by femtosecond direct writing in transparent materials. Opt. Lett. 29, 119–121 (2004).

    ADS  Google Scholar 

  39. Kazansky, P. G. et al. “Quill” writing with ultrashort light pulses in transparent materials. Appl. Phys. Lett. 90, 151120 (2007).

    ADS  Google Scholar 

  40. Rajeev, P. P. et al. Transient nanoplasmonics inside dielectrics. J. Phys. B 40, S273–S282 (2007).

    ADS  Google Scholar 

  41. Brodeur, A. & Chin, S. L. Band-gap dependence of the ultrafast white-light continuum. Phys. Rev. Lett. 80, 4406–4409 (1998).

    ADS  Google Scholar 

  42. Marburger, J. H. Self-focusing: Theory. Prog. Quant. Electron. 4, 35–110 (1975).

    ADS  Google Scholar 

  43. Shen, Y. R. Self-focusing: Experimental. Prog. Quant. Electron. 4, 1–34 (1975).

    ADS  Google Scholar 

  44. Alfano, R. R. & Shapiro, S. L. Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592–594 (1970).

    ADS  Google Scholar 

  45. Nguyen, N. T., Saliminia, A., Liu, W., Chin, S. L. & Vallee, R. Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses. Opt. Lett. 28, 1591–1593 (2003).

    ADS  Google Scholar 

  46. Homoelle, D., Wielandy, S., Gaeta, A. L., Borrelli, N. F. & Smith, C. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses. Opt. Lett. 24, 1311–1313 (1999).

    ADS  Google Scholar 

  47. Kamata, M. & Obara, M. Control of the refractive index change in fused silica glasses induced by a loosely focused femtosecond laser. Appl. Phys. A 78, 85–88 (2004).

    ADS  Google Scholar 

  48. Schaffer, C. B., Brodeur, A., Garcia, J. F. & Mazur, E. Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt. Lett. 26, 93–95 (2001).

    ADS  Google Scholar 

  49. Eaton, S. M. et al. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt. Express 13, 4708–4716 (2005).

    ADS  Google Scholar 

  50. Cheng, G. H., Wang, Y. S., Liu, Q., Zhao, W. & Chen, G. F. Study of three-dimensional storage by parallel writing in PMMA with femtosecond laser pulses. Acta Phys. Sinica 53, 436–440 (2004).

    Google Scholar 

  51. Osellame, R. et al. Femtosecond writing of active optical waveguides with astigmatically shaped beams. J. Opt. Soc. Am. B 20, 1559–1567 (2003).

    ADS  Google Scholar 

  52. Zoubir, A., Lopez, C., Richardson, M. & Richardson, K. Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate). Opt. Lett. 29, 1840–1842 (2004).

    ADS  Google Scholar 

  53. Sowa, S., Watanabe, W., Tamaki, T., Nishii, J. & Itoh, K. Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses. Opt. Express 14, 291–297 (2006).

    ADS  Google Scholar 

  54. Davis, K. M., Miura, K., Sugimoto, N. & Hirao, K. Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731 (1996).

    ADS  Google Scholar 

  55. Takeshi, F., Shimon, I., Tomoko, F., Ken, S. & Hideyuki, H. in Photon Processing in Microelectronics and Photonics III, SPIE, San Jose, California 5339, 524–538 (2004).

    Google Scholar 

  56. Shah, L., Arai, A. Y., Eaton, S. M. & Herman, P. R. Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate. Opt. Express 13, 1999–2006 (2005).

    ADS  Google Scholar 

  57. Zhang, H., Eaton, S. M. & Herman, P. R. Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses. Opt. Express 14, 4826–4834 (2006).

    ADS  Google Scholar 

  58. Tong, L. M., Gattass, R. R., Maxwell, I., Ashcom, J. B. & Mazur, E. Optical loss measurements in femtosecond laser written waveguides in glass. Opt. Commun. 259, 626–630 (2006).

    ADS  Google Scholar 

  59. Bhardwaj, V. R. et al. Femtosecond laser-induced refractive index modification in multicomponent glasses. J. Appl. Phys. 97, 083102 (2005).

    ADS  Google Scholar 

  60. Nolte, S., Will, M., Burghoff, J. & Tuennermann, A. Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics. Appl. Phys. A 77, 109–111 (2003).

    ADS  Google Scholar 

  61. Kamata, M., Obara, M., Gattass, R. R., Cerami, L. R. & Mazur, E. Optical vibration sensor fabricated by femtosecond laser micromachining. Appl. Phys. Lett. 87, 051106 (2005).

    ADS  Google Scholar 

  62. Sikorski, Y. et al. Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses. Electron. Lett. 36, 226–227 (2000).

    Google Scholar 

  63. Osellame, R. et al. Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses. Electron. Lett. 38, 964–965 (2002).

    Google Scholar 

  64. Della Valle, G. et al. C-band waveguide amplifier produced by femtosecond laser writing. Opt. Express 13, 5976–5982 (2005).

    ADS  Google Scholar 

  65. Taccheo, S. et al. Er: Yb-doped waveguide laser fabricated by femtosecond laser pulses. Opt. Lett. 29, 2626–2628 (2004).

    ADS  Google Scholar 

  66. Gui, L., Xu, B. X. & Chong, T. C. Microstructure in lithium niobate by use of focused femtosecond laser pulses. IEEE Photon. Tech. Lett. 16, 1337–1339 (2004).

    ADS  Google Scholar 

  67. Burghoff, J., Grebing, C., Nolte, S. & Tünnermann, A. Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate. Appl. Phys. Lett. 89, 081108 (2006).

    ADS  Google Scholar 

  68. Shih, T., Gattass, R. R., Mendonca, C. R. & Mazur, E. Faraday rotation in femtosecond laser micromachined waveguides. Opt. Express 15, 5809–5814 (2007).

    ADS  Google Scholar 

  69. Minoshima, K., Kowalevicz, A. M., Hartl, I., Ippen, E. P. & Fujimoto, J. G. Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator. Opt. Lett. 26, 1516–1518 (2001).

    ADS  Google Scholar 

  70. Minoshima, K., Kowalevicz, A. M., Ippen, E. P. & Fujimoto, J. G. Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing. Opt. Express 10, 645–652 (2002).

    ADS  Google Scholar 

  71. Kowalevicz, A. M., Sharma, V., Ippen, E. P., Fujimoto, J. G. & Minoshima, K. Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator. Opt. Lett. 30, 1060–1062 (2005).

    ADS  Google Scholar 

  72. Marshall, G. D., Ams, M. & Withford, M. J. Direct laser written waveguide-Bragg gratings in bulk fused silica. Opt. Lett. 31, 2690–2691 (2006).

    ADS  Google Scholar 

  73. Zhang, H. B., Eaton, S. M., Li, J. Z., Nejadmalayeri, A. H. & Herman, P. R. Type II high-strength Bragg grating waveguides photowritten with ultrashort laser pulses. Opt. Express 15, 4182–4191 (2007).

    ADS  Google Scholar 

  74. Zhang, H., Eaton, S. M. & Herman, P. R. Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser. Opt. Lett. 32, 2559–2561 (2007).

    ADS  Google Scholar 

  75. Kondo, Y. et al. Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses. Opt. Lett. 24, 646–648 (1999).

    ADS  Google Scholar 

  76. Fertein, E. et al. Refractive-index changes of standard telecommunication fiber through exposure to femtosecond laser pulses at 810 cm. Appl. Opt. 40, 3506–3508 (2001).

    ADS  Google Scholar 

  77. Martinez, A., Dubov, M., Khrushchev, I. & Bennion, I. Direct writing of fibre Bragg gratings by femtosecond laser. Electron. Lett. 40, 1170–1172 (2004).

    Google Scholar 

  78. Wikszak, E. et al. Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating. Opt. Lett. 31, 2390–2392 (2006).

    ADS  Google Scholar 

  79. Nikogosyan, D. N. Multi-photon high-excitation-energy approach to fibre grating inscription. Meas. Sci. Technol. 18, R1–R29 (2007).

    ADS  Google Scholar 

  80. Sun, H. B. & Kawata, S. in NMR - 3D Analysis - Photopolymerization Vol. 170 (ed. Lee, S.-K.) 169–273 (Springer, Berlin, 2004).

    Google Scholar 

  81. Maruo, S., Nakamura, O. & Kawata, S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22, 132–134 (1997).

    ADS  Google Scholar 

  82. Kawata, S., Sun, H. B., Tanaka, T. & Takada, K. Finer features for functional microdevices. Nature 412, 697–698 (2001).

    ADS  Google Scholar 

  83. LaFratta, C. N., Fourkas, J. T., Baldacchini, T. & Farrer, R. A. Multiphoton Fabrication. Angew. Chem. Int. Edn 46, 6238–6258 (2007).

    Google Scholar 

  84. Sun, H. B., Matsuo, S. & Misawa, H. Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin. Appl. Phys. Lett. 74, 786–788 (1999).

    ADS  Google Scholar 

  85. Deubel, M. et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nature Mater. 3, 444–447 (2004).

    ADS  Google Scholar 

  86. Berns, M. W., Olson, R. S. & Rounds, D. E. In vitro production of chromosomal lesions with an argon laser microbeam. Nature 221, 74–75 (1969).

    ADS  Google Scholar 

  87. Liang, H., Wright, W. H., Cheng, S., He, W. & Berns, M. W. Micromanipulation of chromosomes in Ptk2 cells using laser microsurgery (optical scalpel) in combination with laser-induced optical force (optical tweezers). Exp. Cell Res. 204, 110–120 (1993).

    Google Scholar 

  88. Berns, M. W. et al. Laser micro-surgery in cell and developmental biology. Science 213, 505–513 (1981).

    ADS  Google Scholar 

  89. Vogel, A., Noack, J., Huttman, G. & Paltauf, G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B 81, 1015–1047 (2005).

    ADS  Google Scholar 

  90. König, K., Riemann, I., Fischer, P. & Halbhuber, K. H. Intracellular nanosurgery with near infrared femtosecond laser pulses. Cell. Mol. Biol. 45, 195–201 (1999).

    Google Scholar 

  91. Watanabe, W. et al. Femtosecond laser disruption of subcellular organelles in a living cell. Opt. Express 12, 4203–4213 (2004).

    ADS  Google Scholar 

  92. Shen, N. et al. Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor. Mech. Chem. Biosystems 2, 17–25 (2005).

    Google Scholar 

  93. Supatto, W. et al. In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses. Proc. Natl Acad. Sci. USA 102, 1047–1052 (2005).

    ADS  Google Scholar 

  94. Yanik, M. F. et al. Functional regeneration after laser axotomy. Nature 432, 822 (2004).

    ADS  Google Scholar 

  95. Chung, S. H., Clark, D. A., Gabel, C. V., Mazur, E. & Samuel, A. D. T. The role of the AFD neuron in C-elegans thermotaxis analyzed using femtosecond laser ablation. Bmc Neuroscience 7, 30 (2006).

    Google Scholar 

  96. Watanabe, W., Onda, S., Tamaki, T., Itoh, K. & Nishii, J. Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses. Appl. Phys. Lett. 89, 021106 (2006).

    ADS  Google Scholar 

  97. Tamaki, T., Watanabe, W., Nishii, J. & Itoh, K. Welding of transparent materials using femtosecond laser pulses. Jpn J. Appl. Phys. 44, L687–L689 (2005).

    ADS  Google Scholar 

  98. Watanabe, W., Onda, S., Tamaki, T. & Itoh, K. Direct joining of glass substrates by 1 kHz femtosecond laser pulses. Appl. Phys. B 87, 85–89 (2007).

    ADS  Google Scholar 

  99. Tamaki, T., Watanabe, W. & Itoh, K. Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm. Opt. Express 14, 10460–10468 (2006).

    ADS  Google Scholar 

  100. Miura, K., Qiu, J. R., Mitsuyu, T. & Hirao, K. Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses. Opt. Lett. 25, 408–410 (2000).

    ADS  Google Scholar 

  101. Yu, B. et al. Study of crystal formation in borate, niobate, and titanate glasses irradiated by femtosecond laser pulses. J. Opt. Soc. Am. B 21, 83–87 (2004).

    ADS  Google Scholar 

  102. Miura, K., Qiu, J. R., Fujiwara, S., Sakaguchi, S. & Hirao, K. Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions. Appl. Phys. Lett. 80, 2263–2265 (2002).

    ADS  Google Scholar 

  103. Manz, A., Graber, N. & Widmer, H. M. Miniaturized total chemical-analysis systems - A novel concept for chemical sensing. Sens. Actuators B 1, 244–248 (1990).

    Google Scholar 

  104. Reyes, D. R., Iossifidis, D., Auroux, P. A. & Manz, A. Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 74, 2623–2636 (2002).

    Google Scholar 

  105. Auroux, P. A., Iossifidis, D., Reyes, D. R. & Manz, A. Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem. 74, 2637–2652 (2002).

    Google Scholar 

  106. Marcinkevicius, A. et al. Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt. Lett. 26, 277–279 (2001).

    ADS  Google Scholar 

  107. Kondo, Y., Qiu, J., Mitsuyu, T., Hirao, K. & Yoko, T. Three-dimensional microdrilling of glass by multiphoton process and chemical etching. Jpn J. Appl. Phys. 38, L1146–L1148 (1999).

    ADS  Google Scholar 

  108. Masuda, M. et al. 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Appl. Phys. A 76, 857–860 (2003).

    ADS  Google Scholar 

  109. Maselli, V. et al. Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching. Appl. Phys. Lett. 88, 191107 (2006).

    ADS  Google Scholar 

  110. Chiodo, N. et al. Imaging of Bloch oscillations in erbium-doped curved waveguide arrays. Opt. Lett. 31, 1651–1653 (2006).

    ADS  Google Scholar 

  111. Szameit, A. et al. Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica. Opt. Express 14, 6055–6062 (2006).

    ADS  Google Scholar 

  112. Pierce, J. R. Coupling of modes of propagation. J. Appl. Phys. 25, 179–183 (1954).

    ADS  MATH  Google Scholar 

  113. Bellouard, Y., Said, A., Dugan, M. & Bado, P. Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt. Express 12, 2120–2129 (2004).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge C. R. Mendonca, J. Dowd, M. Haider-Syed and T. Baldacchini for input on the manuscript. The authors are supported by the Army Research Office under contract W911NF-05-1-0471.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gattass, R., Mazur, E. Femtosecond laser micromachining in transparent materials. Nature Photon 2, 219–225 (2008). https://doi.org/10.1038/nphoton.2008.47

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.47

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing