A nanoelectromechanical tunable laser

Article metrics

Abstract

The ability to tune the frequency of an oscillator is of critical importance and is a fundamental building block for many systems, be they mechanical or electronic1,2. However, this very important function is still highly inadequate in optical oscillators, particularly in semiconductor laser diodes3,4. The limitations in tuning a laser frequency (or wavelength) include the tuning range and the speed of tuning, which is typically milliseconds or slower. In addition, the tuning is often not continuous and may require complex synchronization of several electrical control signals. In this Letter, we present a new tunable laser structure with a lightweight nanoelectromechanical mirror based on a single-layer, high-contrast subwavelength grating. The high-contrast subwavelength grating reflector enables a drastic reduction of the mirror mass, which increases the mechanical resonant frequency and hence tuning speed5. This allows for a wavelength-tunable light source with potential switching speeds of the order of tens of nanoseconds and suggests various new areas of practical application, such as bio- or chemical sensing6,7,8, chip-scale atomic clocks9 and projection displays10,11.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Nanoelectromechanical tunable laser with a lightweight mirror.
Figure 2: Optical characteristic of NEMO-tunable VCSEL.
Figure 3: Continuous wavelength tuning of NEMO-tunable VCSEL.
Figure 4: Wavelength-tuning range limited by mirror bandwidth.
Figure 5: Mechanical tuning speed of NEMO-tunable VCSEL.

References

  1. 1

    Horowitz, P. & Hill, W. The Art of Electronics (Cambridge Univ. Press, New York, 1980).

  2. 2

    Ilic, B. R., Krylov, S., Kondratovich, M. & Craighead, H. G. Optically actuated nanoelectromechanical oscillators. IEEE J. Sel. Top. Quant. Electron. 13, 392–399 (2007).

  3. 3

    Bruce, E. Tunable lasers. IEEE Spectrum 39, 35–39 (2002).

  4. 4

    Coldren, L. A. Monolithic tunable diode lasers. IEEE J. Sel. Top. Quant. Electron. 6, 988–999 (2000).

  5. 5

    Craighead, H. G. Nanoelectromechanical systems. Science 290, 1532–1535 (2000).

  6. 6

    Li, M., Tang, H. X. & Roukes, M. L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nature Nanotech. 2, 114–120 (2007).

  7. 7

    Cooper, M. A. Optical biosensors in drug discovery. Nature Rev. Drug Discov. 1, 515–528 (2002).

  8. 8

    Lackner, M. et al. CO and CO2 spectroscopy using a 60 nm broadband tunable MEMS-VCSEL at 1.55 µm. Opt. Lett. 31, 3170–3172 (2006).

  9. 9

    Knappe, S. et al. A chip-scale atomic clock based on 87Rb with improved frequency stability. Opt. Express 13, 1249–1253 (2005).

  10. 10

    Van Kessel, P. F., Hornbeck, L. J., Meier, R. E. & Douglass, M. R. A MEMS-based projection display. Proc. IEEE 86, 1687–1704 (1998).

  11. 11

    Solgaard, O., Sandejas, F. S. A. & Bloom, D. M. Deformable grating optical modulator. Opt. Lett. 17, 688–690 (1992).

  12. 12

    Wu, M. C., Solgaard, O. & Ford, J. E. Optical MEMS for lightwave communication. J. Lightwave Technol. 24, 4433–4454 (2006).

  13. 13

    Iga, K. Surface-emitting laser — its birth and generation of new optoelectronics field. IEEE J. Sel. Top. Quant. Electron. 6, 1201–1215 (2000).

  14. 14

    Koyama, F. Recent advances of VCSEL photonics. J. Lightwave Technol. 24, 4502–4513 (2006).

  15. 15

    Chang-Hasnain, C. J. Tunable VCSEL. IEEE J. Sel. Top. Quant. Electron. 6, 978–987 (2000).

  16. 16

    Harris, J. S. Jr. Tunable long-wavelength vertical-cavity lasers: The engine of next generation optical networks? IEEE J. Sel. Top. Quant. Electron. 6, 1145–1160 (2000).

  17. 17

    Riemenschneider, F. et al. Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range. IEEE Photon. Technol. Lett. 16, 2212–2214 (2004).

  18. 18

    Hofmann, W. et al. High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs–InP VCSELs. Electron. Lett. 42, 976–977 (2006).

  19. 19

    Huang, M. C. Y., Zhou, Y. & Chang-Hasnain, C. J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nature Photon. 1, 119–122 (2007).

  20. 20

    Huang, M. C. Y., Zhou, Y. & Chang-Hasnain, C. J. Nano electro-mechanical optoelectronic tunable VCSEL. Opt. Express 15, 1222–1227 (2007).

  21. 21

    Mateus, C. F. R., Huang, M. C. Y., Deng, Y., Neureuther, A. R. & Chang-Hasnain, C. J. Ultrabroadband mirror using low-index cladded subwavelength grating. IEEE Photon. Technol. Lett. 16, 518–520 (2004).

  22. 22

    Mateus, C. F. R., Huang, M. C. Y., Chen, L., Chang-Hasnain, C. J. & Suzuki, Y. Broad-band mirror (1.12–1.62 µm) using a subwavelength grating. IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).

  23. 23

    Huang, M. C. Y., Cheng, K. B., Zhou, Y., Pisano, A. P. & Chang-Hasnain, C. J. Monolithic integrated piezoelectric MEMS-tunable VCSEL. IEEE J. Sel. Top. Quant. Electron. 13, 374–380 (2007).

  24. 24

    Bendickson, J. M., Glytsis, E. N., Gaylord, T. K. & Brundrett, D. L. Guided-mode resonant subwavelength gratings: Effects of finite beams and finite gratings. J. Opt. Soc. Am. A 18, 1912–1928 (2001).

  25. 25

    Maute, M. et al. Long-wavelength tunable vertical-cavity surface-emitting lasers and the influence of coupled cavities. Opt. Express 13, 8008–8014 (2005).

  26. 26

    Mateus, C. F. R., Huang, M. C. Y. & Chang-Hasnain, C. J. Micromechanical tunable optical filters: General design rules for wavelengths from near-IR up to 10 µm. Sens. Actuat. A 119, 57–62 (2005).

  27. 27

    Ding, Y. & Magnusson, R. Resonant leaky-mode spectral-band engineering and device applications. Opt. Express 12, 5661–5674 (2004).

  28. 28

    Boutami, S., Benbakir, B., Leclercq, J. L. & Viktorovitch, P. Compact and polarization controlled 1.55 µm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror. Appl. Phys. Lett. 91, 071105 (2007).

  29. 29

    Gustavsson, J. S. et al. Efficient and individually controllable mechanisms for mode and polarization selection in VCSELs, based on a common, localized, sub-wavelength surface grating. Opt. Express 13, 6626–6634 (2005).

Download references

Acknowledgements

This project was supported by the Defense Advanced Research Projects Agency (DARPA) Center for Optoelectronic Nanostructure Semiconductor Research and Technology (CONSRT). We thank Land Mark Optoelectronic for the growth of the epitaxy wafer and Berkeley Microfabrication Laboratory for the fabrication support.

Author information

Correspondence to Connie J. Chang-Hasnain.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, M., Zhou, Y. & Chang-Hasnain, C. A nanoelectromechanical tunable laser. Nature Photon 2, 180–184 (2008) doi:10.1038/nphoton.2008.3

Download citation

Further reading