Abstract
Antennas have been used for more than a century to control the emission and collection of radio and microwave radiation1. An optical analogue is of great interest as it will allow unique control of absorption and emission2,3 at the nanometre scale4. Despite the intense recent research on optical antennas5,6,7,8, one of the main functions of traditional antennas, the directing of radiation, remains a challenge at optical frequencies. Here we experimentally demonstrate control of the emission direction of individual molecules by reversible coupling to an optical monopole antenna. We show how the angular emission of the coupled system is determined by the dominant antenna mode—that is, the antenna design—regardless of molecular orientation. This result reveals the role of the plasmon mode in the emission process and provides a clear guideline how to exploit the large available library of radio antennas to direct emission in nano-optical microscopy9,10, spectroscopy11,12 and light-emitting devices, including single-photon sources13,14,15.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Hertz, H. Űber electrodynamische Wellen im Luftraume und deren Reflexion. Annalen der Physik und Chemie 270, 609–623 (1888).
Fermi, E. Quantum theory of radiation. Rev. Mod. Phys. 4, 87–132 (1932).
Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).
Greffet, J.-J. Nanoantennas for light emission. Science 308, 1561–1563 (2006).
Kühn, S., Håkanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).
Fromm, D. P., Sundaramurthy, A., Schuck, J., Kino, G. & Moerner, W. E. Gap-dependent optical coupling of single ‘Bowtie’ nanoantennas resonant in the visible. Nano Lett. 4, 957–961 (2004).
Mühlschlegel, P., Eisler, H.-J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).
Taminiau, T. H., Moerland, R. J., Segerink, F. B., Kuipers, L. & van Hulst, N. F. λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Lett. 7, 28–33 (2007).
Betzig, E. & Chichester, R. J. Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425 (1993).
Frey, H. G., Witt, S., Felderer, K. & Guckenberger, R. High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip. Phys. Rev. Lett. 93, 200801 (2004).
Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).
Hartschuh, A., Sánchez, E. J., Xie, X. S. & Novotny, L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003).
Kim, J., Benson, O., Kan, H. & Yamamoto, Y. A single-photon turnstile device. Nature 397, 500–503 (1999).
Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).
Lounis, B. & Moerner, W. E., Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000).
Lodahl, P. et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654–657 (2004).
Schniepp, H. & Sandoghdar, V. Spontaneous emission of europium ions embedded in dielectric nanospheres. Phys. Rev. Lett. 89, 257403 (2002).
Steiner, M. et al. Microcavity-controlled single-molecule fluorescence. Chem. Phys. Chem. 6, 2190–2196 (2005).
Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007).
Wedge, S. & Barnes, W. L. Surface plasmon-polariton mediated light emission through thin metal films. Opt. Express 12, 3673–3685 (2004).
Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).
Farahani, J. N., Pohl, D. W., Eisler, H.-J. & Hecht, B. Single quantum dot coupled to a scanning optical antenna: A tunable superemitter. Phys. Rev. Lett. 95, 017402 (2005).
Novotny, L. Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007).
Balanis, C. A. Antenna Theory: Analysis and Design 3rd edn 799–801 (Wiley, Hoboken, New Jersey, 2005).
Mertens, H., Biteen, J. S., Atwater, H. A. & Polman, A. Polarization-selective plasmon-enhanced silicon quantum-dot luminescence. Nano Lett. 6, 2622–2625 (2006).
Gersen, H. et al. Influencing the angular emission of a single molecule. Phys. Rev. Lett. 85, 5312–5315 (2000).
Veerman, J. A., Otter, A. M., Kuipers, L. & van Hulst, N. F. High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling. Appl. Phys. Lett. 72, 3115–3117 (1998).
Veerman, J. A., Garcia-Parajo, M. F., Kuipers, L. & van Hulst, N. F. Single molecule mapping of the optical field distribution of probes for near-field microscopy. J. Microsc. 194, 477–482 (1999).
Weiland, T. Discretization method for solution of Maxwells equations for 6-component fields. Electron. Commun. AEU 31, 116–120 (1977).
Lukosz, W. Light-emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation. J. Opt. Soc. Am. 69, 1495–1503 (1979).
Acknowledgements
We thank J. Overman for performing the initial experiments, L. Kuipers and R.J. Moerland for discussions, Computer Simulation Technology (CST), Darmstadt, Germany, for constructive feedback on the use of Microwave Studio, and the Koerber Foundation (Hamburg, Germany) for financial support.
Author information
Authors and Affiliations
Contributions
T.H.T. performed the experiments, carried out the interpretation and wrote the manuscript. F.D.S. and T.H.T. performed and processed the FIT calculations. F.B.S. and T.H.T. fabricated the antennas. N.F.v.H. supervised the project.
Corresponding author
Supplementary information
Supplementary Information
Supplementary Information S1 (PDF 78 kb)
Supplementary Information
Supplementary video S1 animated video.gif (GIF 362 kb)
Rights and permissions
About this article
Cite this article
Taminiau, T., Stefani, F., Segerink, F. et al. Optical antennas direct single-molecule emission. Nature Photon 2, 234–237 (2008). https://doi.org/10.1038/nphoton.2008.32
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2008.32
This article is cited by
-
Bright single-nanocrystal upconversion at sub 0.5 W cm−2 irradiance via coupling to single nanocavity mode
Nature Photonics (2023)
-
Defocused imaging-based quantification of plasmon-induced distortion of single emitter emission
Light: Science & Applications (2023)
-
Ultrasensitive detection of local acoustic vibrations at room temperature by plasmon-enhanced single-molecule fluorescence
Nature Communications (2022)
-
Spontaneous emission in micro- or nanophotonic structures
PhotoniX (2021)
-
Numerical study of an efficient light focusing nano-coupler based on C-shaped waveguides
Applied Physics B (2021)