High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks

Article metrics

Abstract

Recent advances in silicon nanophotonics, including demonstrations of ultracompact modulators1,2,3,4, germanium waveguide photodetectors5,6,7 and wavelength-division multiplexers8,9,10, indicate the feasibility of on-chip optical interconnects integrated with multicore microprocessors11,12,13,14. Studies13,14 have suggested that direct replacement of part or all of the electrical interconnect wiring with point-to-point optical links11,12 may not provide sufficient power savings to make this approach attractive to chip designers. However, if high-bandwidth optical signals can be switched and routed using an on-chip silicon nanophotonic interconnection network, significant performance gains can be expected13,14. Here we show an ultracompact (40 × 12 µm2) wavelength-insensitive switch based on cascaded silicon microring resonators, which may bring this vision closer to reality by serving as a critical basic element for scalable on-chip optical networks. Fast (<2 ns) error-free (bit error rate < 1 × 10−12) switching of multiple (up to 9) 40-Gbit s−1 optical channels is demonstrated in a temperature-insensitive (±15 °C) device.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Scanning electron micrograph and drop-port transmission characteristics of the switch device.
Figure 2: Characterization of spectral and temporal switching behaviour for a single-wavelength channel.
Figure 3: Demonstration of broadband wavelength-insensitive deflection switching.
Figure 4: Characterization of BER penalties under switching operation.

References

  1. 1

    Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electrooptic modulator. Nature 435, 325–327 (2005).

  2. 2

    Xu, Q., Manipatruni, S., Schmidt, B., Shakya, J. & Lipson, M. 12.5 Gbit/s carrier injection-based silicon micro-ring silicon modulators. Opt. Express 15, 430–436 (2007).

  3. 3

    Analui, B., Guckenberger, D., Kucharski, D. & Narasimha, A. A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-µm CMOS SOI technology. IEEE J. Solid State Circuits 41, 2945–2955 (2006).

  4. 4

    Green, W. M. J., Rooks, M. J., Sekaric, L. & Vlasov, Y. A. Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator. Opt. Express 15, 17106–17113 (2007).

  5. 5

    Ahn, D. et al. High performance, waveguide integrated Ge photodetectors. Opt. Express 15, 3916–3921 (2007).

  6. 6

    Masini, G., Capellini, G., Witzens, J. & Gunn, C. A four-channel, 10 Gbps monolithic optical receiver in 130 nm CMOS with integrated Ge waveguide photodetectors, post deadline paper PDP31, in Conference on Optical Fiber Communication (Anaheim, California, 2007).

  7. 7

    Vivien, L. et al. High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide. Opt. Express 15, 9843–9848 (2007).

  8. 8

    Bogaerts, W. et al. Compact wavelength-selective functions in silicon-on-insulator photonic wires. IEEE J. Sel. Top. Quant. Electron. 12, 1394–1401 (2006).

  9. 9

    Xia, F., Rooks, M., Sekaric, L. & Vlasov, Y. Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. Opt. Express 15, 11934–11941 (2007).

  10. 10

    Barwicz, T. et al. Silicon photonics for compact energy-efficient interconnects. J. Opt. Networking 6, 63–73 (2007).

  11. 11

    O'Connor, I. & Gaffiot, F. in Ultra Low-Power Electronics and Design (ed. Macii, E.) 21–39 (Springer, New York, 2004).

  12. 12

    O'Connor, I. et al. Systematic simulation-based predictive synthesis of integrated optical interconnect. IEEE Trans VLSI Syst. 15, 927–940 (2007).

  13. 13

    Shacham, A., Bergman, K. & Carloni, L. On the design of a photonic network-on-chip, in Proc. 1st IEEE Int. Symp. Networks-on-Chip 53–64 (IEEE, New York, 2007).

  14. 14

    Bergman, K., Carloni, L. P., Kash, J. A. & Vlasov, Y. in Eleventh Annual Workshop on High Performance Embedded Computing (HPEC) (Lexington, Massachusetts, 2007) 〈http://www.ll.mit.edu/HPEC/2007/index.html〉.

  15. 15

    Small, B. A. et al. Multiple-wavelength integrated photonic networks based on microring resonator devices. J. Opt. Networking 6, 112–120 (2007).

  16. 16

    Dong, P., Preble, S. & Lipson, M. All-optical compact silicon comb switch. Opt. Express 15, 9600–9605 (2007).

  17. 17

    Little, B. E., Chu, S. T., Pan, W. & Kokubun, Y. Microring resonator arrays for VLSI photonics. IEEE Photon. Technol. Lett. 12, 323–325 (2000).

  18. 18

    Emelett, S. & Soref, R. Analysis of dual-microring-resonator cross-connect switches and modulators. Opt. Express 13, 7840–7853 (2005).

  19. 19

    Emelett, S. & Soref, R. Design and simulation of silicon microring optical routing switches. IEEE J. Lightwave Technol. 23, 1800–1807 (2005).

  20. 20

    Emelett, S. & Soref, R. Synthesis of dual-microring-resonator cross-connect switches and modulators. Opt. Express 13, 4439–4456 (2005).

  21. 21

    Agarwal, A. et al. Fully programmable ring-resonator-based integrated photonic circuit for phase coherent applications. J. Lightwave Technol. 24, 77–87 (2006).

  22. 22

    Chen, W. et al. Compact, full C-band, widely tunable optical dynamic dispersion compensators, post deadline paper PDP8, in Conference on Optical Fiber Communication (Anaheim, California, 2006).

  23. 23

    Hamann, H. F. et al. Hotspot-limited microprocessors: Direct temperature and power distribution measurements. IEEE J. Solid State Circ. 42, 56–65 (2007).

  24. 24

    Vlasov, Y. A., O'Boyle, M., Hamann, H. F. & McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005).

  25. 25

    Poon, J. K. S., Zhu, L., DeRose, G. & Yariv, A. Transmission and group delay of microring coupled-resonator optical waveguides. Opt. Lett. 31, 456–458 (2006).

  26. 26

    Soref, R. A. Silicon-based optoelectronics. Proc. IEEE 81, 1687–1706 (1993).

  27. 27

    Dulkeith, E. et al. Group index and group velocity dispersion in silicon-on-insulator photonic wires. Opt. Express 14, 3853–3863 (2006).

  28. 28

    Xia, F., Sekaric, L. & Vlasov, Y. A. Ultracompact optical buffers on a silicon chip. Nature Photon. 1, 65–71 (2007).

  29. 29

    McNab, S. J., Moll, N. & Vlasov, Y. Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt. Express 11, 2927–2939 (2003).

Download references

Acknowledgements

We acknowledge partial financial support from the Defense Advanced Research Projects Agency – Defense Sciences Office (DARPA DSO) Slow-Light program under contract N00014-07-C-0105. The authors are grateful to C. Schow for help with BER and eye-diagram measurements and much useful advice.

Author information

Correspondence to Yurii Vlasov.

Supplementary information

Supplementary Information

Numerical modeling of deflection switch operation (PDF 134 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vlasov, Y., Green, W. & Xia, F. High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nature Photon 2, 242–246 (2008) doi:10.1038/nphoton.2008.31

Download citation

Further reading