Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Four-wave-mixing stopped light in hot atomic rubidium vapour

Abstract

Digital signal processing, holography, and quantum and classical information processing rely heavily upon recording the amplitude and phase of coherent optical signals. One method for achieving coherent information storage makes use of electromagnetically induced transparency. Storage is achieved by compressing the optical pulse using the steep dispersion of the electromagnetically induced transparency medium and then mapping the electric field to local atomic quantum-state superpositions. Here we show that nonlinear optical processes may enhance pulse compression and storage, and that information about the nonlinear process itself may be stored coherently. We report on a pulse storage scheme in hot atomic rubidium vapour, in which a four-wave-mixing normal mode is stored using a double-Λ configuration. The entire (broadened) waveform of the input signal is recovered after several hundred microseconds (1/e time of about 120 µs), as well as a new optical mode (idler) generated from the four-wave-mixing process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Four-wave-mixing storage experiment and energy-level diagram.
Figure 2: Four-wave-mixing resonance.
Figure 3: Storage and retrieval of four-wave-mixing normal mode.
Figure 4: Signal retrieval efficiency versus storage time.
Figure 5: Measured average idler pulse power versus coupling beam input power.

Similar content being viewed by others

References

  1. Harris, S. E., Field, J. E. & Imamog˘lu, A. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107–1110 (1990).

    Article  ADS  Google Scholar 

  2. Hemmer, P. R. et al. Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium. Opt. Lett. 20, 982–984 (1995).

    Article  ADS  Google Scholar 

  3. Lukin, M. D., Hemmer, P. R. & Scully, M. O. Resonant nonlinear optics in phase-coherent media, in Advances in Atomic Molecular and Optical Physics, Vol. 42, 347–386 (Academic Press, 2000).

    Google Scholar 

  4. Phillips, D. F., Fleischhauer, A., Mair, A., Walsworth, R. L. & Lukin, M. D. Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001).

    Article  ADS  Google Scholar 

  5. Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

    Article  ADS  Google Scholar 

  6. Raczynski, A. & Zaremba, J. Controlled light storage in a double lambda system. Opt. Commun. 209, 149–154 (2002).

    Article  ADS  Google Scholar 

  7. Raczynski, A., Zaremba, J. & Zielinska-Kaniasty, S. Electromagnetically induced transparency and storing of a pair of pulses of light. Phys. Rev. A 69, 043801 (2004).

    Article  ADS  Google Scholar 

  8. Joshi, A. & Xiao, M. Generalized dark-state polaritons for photon memory in multilevel atomic media. Phys. Rev. A 71, 041801 (2005).

    Article  ADS  Google Scholar 

  9. Li, Z., Xu, L. S. & Wang, K. G. The dark-state polaritons of a double-lambda atomic ensemble. Phys. Lett. A 346, 269–274 (2005).

    Article  ADS  Google Scholar 

  10. Raczynski, A., Rzepecka, M., Zaremba, J. & Zielinska-Kaniasty, S. Polariton picture of light propagation and storing in a tripod system. Opt. Commun. 260, 73–80 (2006).

    Article  ADS  Google Scholar 

  11. Yomba, E. New generalized hyperbolic functions to find new coupled ultraslow optical soliton pairs in a cold three-state double-lambda system. Physica Scripta 76, 8–14 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  12. Eilam, A., Wilson-Gordon, A. D. & Friedmann, H. Slow and stored light in an amplifying double-λ system. Opt. Lett. 33, 1605–1607 (2008).

    Article  ADS  Google Scholar 

  13. Chen, Y.-F., Wang, C.-Y., Wang, S.-H. & Yu, I. A. Low-light-level cross-phase-modulation based on stored light pulses. Phys. Rev. Lett. 96, 043603 (2006).

    Article  ADS  Google Scholar 

  14. van der Wal, C. H. et al. Atomic memory for correlated photon states. Science 301, 196–200 (2003).

    Article  ADS  Google Scholar 

  15. Kuzmich, A. et al. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature 423, 731–734 (2003).

    Article  ADS  Google Scholar 

  16. Eisaman, M. D. et al. Shaping quantum pulses of light via coherent atomic memory. Phys. Rev. Lett. 93, 233602 (2004).

    Article  ADS  Google Scholar 

  17. Chen, S. A. et al. Deterministic and storable single-photon source based on a quantum memory. Phys. Rev. Lett. 97, 173004 (2006).

    Article  ADS  Google Scholar 

  18. Thompson, J. K., Simon, J., Loh, H. & Vuletic, V. A high-brightness source of narrowband, identical-photon pairs. Science 313, 74–77 (2006).

    Article  ADS  Google Scholar 

  19. McCormick, C. F., Boyer, V., Arimondo, E. & Lett, P. D. Strong relative intensity squeezing by four-wave mixing in rubidium vapor. Opt. Lett. 32, 178–180 (2007).

    Article  ADS  Google Scholar 

  20. Boyer, V., Marino, A. M. & Lett, P. D. Generation of spatially broadband twin beams for quantum imaging. Phys. Rev. Lett. 100, 143601 (2008).

    Article  ADS  Google Scholar 

  21. Balić, V., Braje, D. A., Kolchin, P., Yin, G. Y. & Harris, S. E. Generation of paired photons with controllable waveforms. Phys. Rev. Lett. 94, 183601 (2005).

    Article  ADS  Google Scholar 

  22. Du, S., Kolchin, P., Belthangady, C., Yin, G. Y. & Harris, S. E. Subnatural linewidth biphotons with controllable temporal length. Phys. Rev. Lett. 100, 183603 (2008).

    Article  ADS  Google Scholar 

  23. Fleischhauer, M. & Lukin, M. D. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000).

    Article  ADS  Google Scholar 

  24. Nagel, A., Brandt, S., Meschede, D. & Wynands, R. Light shift of coherent population trapping resonances. Europhys. Lett. 48, 385–389 (1999).

    Article  ADS  Google Scholar 

  25. Vudyasetu, P. K., Camacho, R. M. & Howell, J. C. Storage and retrieval of multimode transverse images in hot atomic rubidium vapor. Phys. Rev. Lett. 100, 123903 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) Slow Light program.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the experiment and its physical interpretation. R.M.C and P.V.K. built the apparatus, took the data, and analysed the data. R.M.C. wrote the manuscript with input from P.V.K. and J.C.H.

Corresponding author

Correspondence to Ryan M. Camacho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camacho, R., Vudyasetu, P. & Howell, J. Four-wave-mixing stopped light in hot atomic rubidium vapour. Nature Photon 3, 103–106 (2009). https://doi.org/10.1038/nphoton.2008.290

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.290

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing