Ultrafast active plasmonics

Article metrics

Abstract

Surface plasmon polaritons, propagating bound oscillations of electrons and light at a metal surface, have great potential as information carriers for next-generation, highly integrated nanophotonic devices1,2. Since the term ‘active plasmonics’ was coined in 20043, a number of techniques for controlling the propagation of guided surface plasmon polariton signals have been demonstrated4,5,6,7. However, with sub-microsecond or nanosecond response times at best, these techniques are likely to be too slow for future applications in such fields as data transport and processing. Here we report that femtosecond optical frequency plasmon pulses can propagate along a metal–dielectric waveguide and that they can be modulated on the femtosecond timescale by direct ultrafast optical excitation of the metal, thereby offering unprecedented terahertz modulation bandwidth—a speed at least five orders of magnitude faster than existing technologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Ultrafast optical modulation of SPP propagation.
Figure 2: SPP modulation through optical excitation of aluminium.
Figure 3: Ultrafast SPP modulation dynamics and pump fluence scaling.

References

  1. 1

    Atwater, H. A. The promise of plasmonics. Sci. Am. 296, 56–63 (April 2007).

  2. 2

    Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

  3. 3

    Krasavin, A. V. & Zheludev, N. I. Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations. Appl. Phys. Lett. 84, 1416–1418 (2004).

  4. 4

    Nikolajsen, T., Leosson, K. & Bozhevolnyi, S. I. Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl. Phys. Lett. 85, 5833–5835 (2004).

  5. 5

    Lereu, A. L., Passian, A., Goudonnet, J-P., Thundat, T. & Ferrell, T. L. Optical modulation processes in thin films based on thermal effects of surface plasmons. Appl. Phys. Lett. 86, 154101 (2005).

  6. 6

    Pala, R. A., Shimizu, K. T., Melosh, N. A. & Brongersma, M. L. A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett. 8, 1506–1510 (2008).

  7. 7

    Pacifici, D., Lezec, H. J. & Atwater, H. A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photon. 1, 402–406 (2007).

  8. 8

    Hendry, E. et al. Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture. Phys. Rev. Lett. 100, 123901 (2008).

  9. 9

    Dintinger, J., Robel, I., Kamat, P. V., Genet, C. & Ebbesen, T. W. Terahertz all-optical molecule-plasmon modulation. Adv. Mater. 18, 1645–1648 (2006).

  10. 10

    Link, S. & El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999).

  11. 11

    Rotenberg, N., Betz, M. & van Driel, H. M. Ultrafast control of grating-assisted light coupling to surface plasmons. Opt. Lett. 33, 2137–2139 (2008).

  12. 12

    Segall, B. Energy bands of aluminum. Phys. Rev. 124, 1797–1806 (1961).

  13. 13

    Guo, C., Rodriguez, G., Lobad A. & Taylor, A. J. Structural phase transition of aluminum induced by electronic excitation. Phys. Rev. Lett. 84, 4493–4496 (2000).

  14. 14

    Wilks, R. & Hicken, R. J. Transient optical polarization response of aluminium at an interband transition. J. Phys.: Condens. Matter. 16, 4607–4617 (2004).

  15. 15

    Park, S., Pelton, M., Liu, M., Guyot-Sionnest, P. & Scherer, N. F. Ultrafast resonant dynamics of surface plasmons in gold nanorods. J. Phys. Chem. C 111, 116–123 (2007).

  16. 16

    Georges, A. T. Coherent and incoherent multiple-harmonic generation from metal surfaces. Phys. Rev. A 54, 2412–2418 (1996).

  17. 17

    Eesley, G. L. Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses. Phys. Rev. B 33, 2144–2151 (1986).

  18. 18

    Richardson, C. J. K. & Spicer, J. B. Short-time thermoelastic contributions to picosecond-time scale reflectivity measurements of metals. Appl. Phys. Lett. 80, 2895–2898 (2002).

  19. 19

    Krasavin, A. V., MacDonald, K. F., Zheludev, N. I. & Zayats, A. V. High-contrast modulation of light with light by control of surface plasmon polariton wave coupling. Appl. Phys. Lett. 85, 3369–3371 (2004).

  20. 20

    Palomba, S. & Novotny, L. Nonlinear excitation of surface plasmon polaritons by four-wave mixing. Phys. Rev. Lett. 101, 056802 (2008).

  21. 21

    Krasavin, A. V., Zayats, A. V. & Zheludev, N. I. Active control of surface plasmon–polariton waves. J. Opt. A: Pure Appl. Opt. 7, S85–S89 (2005).

  22. 22

    Feigenbaum, E. & Orenstein, M. Plasmon-soliton. Opt. Lett. 32, 674–676 (2007).

Download references

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council (UK), the Department of Energy and National Science Foundation (USA), and the United States–Israel Binational Science Foundation. The authors would like to acknowledge the technical assistance of J.D. Mills.

Author information

Correspondence to Kevin F. MacDonald.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

MacDonald, K., Sámson, Z., Stockman, M. et al. Ultrafast active plasmonics. Nature Photon 3, 55–58 (2009) doi:10.1038/nphoton.2008.249

Download citation

Further reading