Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrafast active plasmonics

Abstract

Surface plasmon polaritons, propagating bound oscillations of electrons and light at a metal surface, have great potential as information carriers for next-generation, highly integrated nanophotonic devices1,2. Since the term ‘active plasmonics’ was coined in 20043, a number of techniques for controlling the propagation of guided surface plasmon polariton signals have been demonstrated4,5,6,7. However, with sub-microsecond or nanosecond response times at best, these techniques are likely to be too slow for future applications in such fields as data transport and processing. Here we report that femtosecond optical frequency plasmon pulses can propagate along a metal–dielectric waveguide and that they can be modulated on the femtosecond timescale by direct ultrafast optical excitation of the metal, thereby offering unprecedented terahertz modulation bandwidth—a speed at least five orders of magnitude faster than existing technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ultrafast optical modulation of SPP propagation.
Figure 2: SPP modulation through optical excitation of aluminium.
Figure 3: Ultrafast SPP modulation dynamics and pump fluence scaling.

Similar content being viewed by others

References

  1. Atwater, H. A. The promise of plasmonics. Sci. Am. 296, 56–63 (April 2007).

    Article  Google Scholar 

  2. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    Article  ADS  Google Scholar 

  3. Krasavin, A. V. & Zheludev, N. I. Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations. Appl. Phys. Lett. 84, 1416–1418 (2004).

    Article  ADS  Google Scholar 

  4. Nikolajsen, T., Leosson, K. & Bozhevolnyi, S. I. Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl. Phys. Lett. 85, 5833–5835 (2004).

    Article  ADS  Google Scholar 

  5. Lereu, A. L., Passian, A., Goudonnet, J-P., Thundat, T. & Ferrell, T. L. Optical modulation processes in thin films based on thermal effects of surface plasmons. Appl. Phys. Lett. 86, 154101 (2005).

    Article  ADS  Google Scholar 

  6. Pala, R. A., Shimizu, K. T., Melosh, N. A. & Brongersma, M. L. A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett. 8, 1506–1510 (2008).

    Article  ADS  Google Scholar 

  7. Pacifici, D., Lezec, H. J. & Atwater, H. A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photon. 1, 402–406 (2007).

    Article  ADS  Google Scholar 

  8. Hendry, E. et al. Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture. Phys. Rev. Lett. 100, 123901 (2008).

    Article  ADS  Google Scholar 

  9. Dintinger, J., Robel, I., Kamat, P. V., Genet, C. & Ebbesen, T. W. Terahertz all-optical molecule-plasmon modulation. Adv. Mater. 18, 1645–1648 (2006).

    Article  Google Scholar 

  10. Link, S. & El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999).

    Article  Google Scholar 

  11. Rotenberg, N., Betz, M. & van Driel, H. M. Ultrafast control of grating-assisted light coupling to surface plasmons. Opt. Lett. 33, 2137–2139 (2008).

    Article  ADS  Google Scholar 

  12. Segall, B. Energy bands of aluminum. Phys. Rev. 124, 1797–1806 (1961).

    Article  ADS  Google Scholar 

  13. Guo, C., Rodriguez, G., Lobad A. & Taylor, A. J. Structural phase transition of aluminum induced by electronic excitation. Phys. Rev. Lett. 84, 4493–4496 (2000).

    Article  ADS  Google Scholar 

  14. Wilks, R. & Hicken, R. J. Transient optical polarization response of aluminium at an interband transition. J. Phys.: Condens. Matter. 16, 4607–4617 (2004).

    ADS  Google Scholar 

  15. Park, S., Pelton, M., Liu, M., Guyot-Sionnest, P. & Scherer, N. F. Ultrafast resonant dynamics of surface plasmons in gold nanorods. J. Phys. Chem. C 111, 116–123 (2007).

    Article  Google Scholar 

  16. Georges, A. T. Coherent and incoherent multiple-harmonic generation from metal surfaces. Phys. Rev. A 54, 2412–2418 (1996).

    Article  ADS  Google Scholar 

  17. Eesley, G. L. Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses. Phys. Rev. B 33, 2144–2151 (1986).

    Article  ADS  Google Scholar 

  18. Richardson, C. J. K. & Spicer, J. B. Short-time thermoelastic contributions to picosecond-time scale reflectivity measurements of metals. Appl. Phys. Lett. 80, 2895–2898 (2002).

    Article  ADS  Google Scholar 

  19. Krasavin, A. V., MacDonald, K. F., Zheludev, N. I. & Zayats, A. V. High-contrast modulation of light with light by control of surface plasmon polariton wave coupling. Appl. Phys. Lett. 85, 3369–3371 (2004).

    Article  ADS  Google Scholar 

  20. Palomba, S. & Novotny, L. Nonlinear excitation of surface plasmon polaritons by four-wave mixing. Phys. Rev. Lett. 101, 056802 (2008).

  21. Krasavin, A. V., Zayats, A. V. & Zheludev, N. I. Active control of surface plasmon–polariton waves. J. Opt. A: Pure Appl. Opt. 7, S85–S89 (2005).

    Article  ADS  Google Scholar 

  22. Feigenbaum, E. & Orenstein, M. Plasmon-soliton. Opt. Lett. 32, 674–676 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council (UK), the Department of Energy and National Science Foundation (USA), and the United States–Israel Binational Science Foundation. The authors would like to acknowledge the technical assistance of J.D. Mills.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin F. MacDonald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacDonald, K., Sámson, Z., Stockman, M. et al. Ultrafast active plasmonics. Nature Photon 3, 55–58 (2009). https://doi.org/10.1038/nphoton.2008.249

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.249

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing