Abstract
Significant progress has been made recently in demonstrating that silicon photonics is a promising technology for low-cost optical detectors, modulators and light sources1,2,3,4,5,6,7,8,9,10,11,12. It has often been assumed, however, that their performance is inferior to InP-based devices. Although this is true in most cases, one of the exceptions is the area of avalanche photodetectors, where silicon's material properties allow for high gain with less excess noise than InP-based avalanche photodetectors and a theoretical sensitivity improvement of 3 dB or more. Here, we report a monolithically grown germanium/silicon avalanche photodetector with a gain–bandwidth product of 340 GHz, a keff of 0.09 and a sensitivity of −28 dB m at 10 Gb s−1. This is the highest reported gain–bandwidth product for any avalanche photodetector operating at 1,300 nm and a sensitivity that is equivalent to mature, commercially available III–V compound avalanche photodetectors. This work paves the way for the future development of low-cost, CMOS-based germanium/silicon avalanche photodetectors operating at data rates of 40 Gb s−1 or higher.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
High-speed Si-Ge avalanche photodiodes
PhotoniX Open Access 25 March 2022
-
Optoelectrical Operation Stability of Broadband PureGaB Ge-on-Si Photodiodes with Anomalous Al-Mediated Sidewall Contacting
Journal of Electronic Materials Open Access 05 October 2021
-
Integrated avalanche photodetectors for visible light
Nature Communications Open Access 23 March 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Pavesi, L. & Guillot, G. Optical Interconnect: The Silicon Approach (Springer-Verlag, Berlin, 2006).
Reed, G. T. & Knights, A. P. Silicon Photonic: An Introduction (John Wiley & Sons, West Sussex, 2004).
Xu, Q., Manipatruni, S., Schmidt, B., Shakya, J. & Lipson, M. 12.5 Gbit s−1 carrier-injection-based silicon micro-ring silicon modulators. Opt. Express 15, 430–436 (2007).
Liu, A. et al. High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 15, 660–668 (2007).
Huang, A. et al. A 10 Gb s−1 photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 µm SOI CMOS. Proc. IEEE International Solid-State Circuits Conference, 922–929 (2006).
Morse, M., Dosunmu, O., Sarid, G. & Chetrit, Y. Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules. Proc. SiGe and Ge: Materials, Processing and Devices 3, 75–84 (2006).
Ahn, D. et al. High performance, waveguide integrated Ge photodetectors. Opt. Express 15, 3916–3921 (2007).
Dehlinger, G. et al. High-speed germanium-on-SOI lateral PIN photodiodes. IEEE Photon. Tech. Lett. 16, 2547–2549 (2004).
Boyraz, O. & Jalali, B. Demonstration of a silicon Raman laser. Opt. Express 12, 5269–5273 (2004).
Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 292–294 (2005).
Sih, V. et al. Raman amplification of 40 Gb s−1 data in low-loss silicon waveguides. Opt. Express 15, 357–362 (2007).
Fang, W. et al. Integrated AlGaInAs-silicon evanescent race track laser and photodetector. Opt. Express 15, 2315–2322 (2007).
Emmons, R. B. Avalanche-photodiode frequency response. J. Appl. Phys. 38, 3705–3714 (1967)
McIntyre, R. J. The distribution of gains in uniformly multiplying avalanche photodiodes: theory. IEEE Trans. Electron. Dev. ED-19, 703–713 (1972).
Campbell, J. C., Tsang, W. T. Qua, G. J. & Johnson, B. C. High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy. IEEE J. Quant. Electron. 24, 496–500 (1988).
Yasuoka, N., Kuwatsuka, H. & Makiuchi, M. Large multiplication-bandwidth products in APDs with a thin InP multiplication layer. Proc. 16th IEEE Annual Meeting of LEOS, 999–1000 (2003).
Kinsey, G. S., Campbell, J. C. & Dentai, A. G. Waveguide avalanche photodiode operating at 1.55 µm with a gain–bandwidth product of 320 GHz. IEEE Photon. Tech. Lett. 13, 842–844 (2001).
Lenox, C. et al. Resonant-cavity InGaAs–InAlAs avalanche photodiodes with gain–bandwidth product of 290 GHz. IEEE Photon. Tech. Lett. 11, 1162–1164 (1999).
Hawkins, A. R., Wu, W., Abraham, P., Streubel, K. & Bowers, J. E. High gain-bandwidth-product silicon heterointerface photodetector. Appl. Phys. Lett. 70, 303–305 (1996).
Kang, Y. et al. Fused InGaAs/Si avalanche phototodiodes with low noise performance. IEEE Photon. Tech. Lett. 14, 1593–1595 (2002).
Clark, W. R. et al. Reliable, high gain–bandwidth product InGaAs/InP avalanche photodiodes for 10 Gb s−1 receivers. Proc. Opt. Fiber Commun. 1, 96–98 (1999).
Franco, D. S. et al. High-performance InGaAs–InP APDs on GaAs. IEEE Photon. Tech. Lett. 17, 873–874 (2005).
Li, N. et al. InGaAs/InAlAs avalanche photodiode with undepleted absorber. Appl. Phys. Lett. 82, 2175–2177 (2003).
Yagyu, E. et al. Recent advances in AlInAs avalanche photodiodes. Proc. Opt. Fiber Commun. 145–147 (2007).
Nakata, T. et al. An ultra high speed waveguide avalanche photodiode for 40 Gb s−1 optical receiver. Proc. 27th European Conference on Optical Communications 564–565 (2001).
Rouvie, A. et al. High gain bandwidth product over 140 GHz planar junction AlInAs avalanche photodiodes. IEEE Photon. Tech. Lett. 20, 455–457 (2008).
Makita, K., Nakata, T., Watanabe, I. & Taguchi, K. High-frequency response limitation of high performance InAlGaAs/InAlAs superlattice avalanche photodiodes. Electron. Lett. 35, 2228–2229 (1999).
Hayashi, M. et al. Microlens-integrated large-area InAlGaAs–InAlAs superlattice APDs for eye-safety 1.5 µm wavelength optical measurement use. IEEE Photon. Tech. Lett. 10, 576–578 (1998).
Su, Y. K., Chang, C. Y. & Wu, T. S. Temperature dependent characteristics of a PIN avalanche photodiode (APD) in Ge, Si and GeAs. Opt. Quant. Electron. 11, 109–117 (1979).
Levine, B. F. et al. −29 dB m sensitivity, InAlAs APD-based receiver for 10 Gb s−1 long-haul (LR-2) applications. Proc. Opt. Fiber Commun. 6, OFM5 (2005).
Ma, C. L. F., Dean, M. J., Tarof, L. E. & Yu, J. C. H. Temperature dependence of breakdown voltages in separate absorption, grading, charge and multiplication InP/InGaAs avalanche photodiodes. IEEE Trans. Electron. Dev. 42, 810–818 (1995).
Hyun, K.-S. & Park, C.-Y. Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure. J. Appl. Phys. 81, 974–984 (1997).
Fama, S. et al. High performance germanium-on-silicon detectors for optical communications. Appl. Phys. Lett. 81, 586–588 (2002).
Koester, S. J. et al. Temperature-dependent analysis of Ge-on-SOI photodetectors and receivers. Proc. 3rd IEEE International Conference on Group IV Photonics, 179–181 (2006).
Kang, Y. et al. Ge/Si avalanche photodiodes for 1.3 µm optical fiber links. Proc. 4th International Conference on Group IV Photonics, 294–296 (2007).
Kang, Y. et al. Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 µm light detection. Opt. Express 16, 9365–9371 (2008).
Liu, Y. et al. A planar InP/InGaAs avalanche photodiode with floating guard ring and double diffused junction. J. Lightwave Technol. 10, 182–192 (1992).
Pauchard, A. R., Besse, P. A. & Popovic, R. S. Dead space effect on the wavelength dependence of gain and noise in avalanche photodiodes. IEEE Trans. Electron. Dev. 47, 1685–1693 (2000).
Luan, H.-C. et al. High-quality Ge epilayers on Si with low threading-dislocation densities. Appl. Phys. Lett. 75, 2909–2911 (1999).
Halbwax, M. et al. Kinetics of Ge growth at low temperature on Si (001) by ultrahigh vacuum chemical vapor deposition. J. Appl. Phys. 97, 064907 (2005).
Acknowledgements
This work was sponsored by Defense Advanced Research Projects Agency (DARPA) under contract number HR0011-06-3-0009 and is supervised by J. Shah in the Microsystems Technology Office (MTO) office. The authors thank T. Liu, S. Yeh and C. Xie for assistance in device sensitivity measurements.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kang, Y., Liu, HD., Morse, M. et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nature Photon 3, 59–63 (2009). https://doi.org/10.1038/nphoton.2008.247
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2008.247
This article is cited by
-
High-speed and low dark current InGaAs/InAlAs avalanche photodiodes with P-type absorption layers
Optical and Quantum Electronics (2023)
-
High-speed Si-Ge avalanche photodiodes
PhotoniX (2022)
-
Integrated avalanche photodetectors for visible light
Nature Communications (2021)
-
Avalanche photodetectors based on two-dimensional layered materials
Nano Research (2021)
-
Optoelectrical Operation Stability of Broadband PureGaB Ge-on-Si Photodiodes with Anomalous Al-Mediated Sidewall Contacting
Journal of Electronic Materials (2021)