Ceramic laser materials

Article metrics

The word 'ceramics' is derived from the Greek keramos, meaning pottery and porcelain. The opaque and translucent cement and clay often used in tableware are not appropriate for optical applications because of the high content of optical scattering sources, that is, defects. Recently, scientists have shown that by eliminating the defects, a new, refined ceramic material — polycrystalline ceramic — can be produced. This advanced ceramic material offers practical laser generation and is anticipated to be a highly attractive alternative to conventional glass and single-crystal laser technologies in the future. Here we review the history of the development of ceramic lasers, the principle of laser generation based on this material, some typical results achieved with ceramic lasers so far, and discuss the potential future outlook for the field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The microstructure of conventional and advanced transparent ceramics.
Figure 2: Laser oscillation using optical-grade Nd:YAG ceramics.


Figure 3: Large-scale Nd:YAG ceramics developed by Konoshima Chemical.

© 2008 OSA

Figure 4: Composite laser elements fabricated by current ceramic technology.
Figure 5: Gradient-distribution ceramic laser composite.

© 2007 OSA

Figure 6: The growth of SSCG single crystal and its laser performance.

© 2007 OSA


  1. 1

    Steen, W. M. & Watkins, K. Laser Materials Processing 3rd edn (Springer, Heidelberg, 2003).

  2. 2

    Ion, J. C. Laser Processing in Engineering Materials: Principles, Procedure and Industrial Application (Butterworth-Heinemann, Oxford, 2005).

  3. 3

    Shaw, A., Groza, J. R., Shackelford, J. F., Lavernia, E. J. & Powers, M. T. Materials Processing Handbook (CRC, Boca Raton, 2007).

  4. 4

    Kannatey-Asibu, E. Principles of Laser Materials Processing (Wiley, 2008).

  5. 5

    Ready, J. F. & Farson, D. F. LIA Handbook of Laser Materials Processing (Magnolia, Berlin, 2001).

  6. 6

    Dahotre, N. B. & Harimkar, S. P. Fabrication and Machining of Materials (Springer, Berlin, 2007).

  7. 7

    Lubatchowski, H. Lasers in Medicine: Laser-Tissue Interactions and Applications (Wiley, 2007).

  8. 8

    Vij, D. R. & Mahesh, K. Medical Applications of Lasers (Springer, Dordrecht, 2002).

  9. 9

    Berlien, H. P. & Muler, G. J. Applied Laser Medicine (Springer, Berlin, Heidberg, New York, 2003).

  10. 10

    Biomedical Photonics Handbook (ed. Tuan, V.-D.) (CRC, Boca Raton, 2003).

  11. 11

    Parker, J. N. & Parker, P. M. Laser Surgery: A Medical Dictionary, Bibliography and Annotated Research Guide to Internet References (ICON Health, 2003).

  12. 12

    Niemz, M. H. Laser-Tissue Interactions (Springer, Berlin, Heidelberg, 2003).

  13. 13

    Waynant, R. W. Lasers in Medicine (CRC, Boca Raton, 2001).

  14. 14

    Slade, S. G., Baker, R. N. & Brockman, D. K. The Complete Book of Laser Eye Surgery (Bantam Books, New York, 2002).

  15. 15

    Frankhauser, F. & Kwasniewska, S. Lasers in Ophthalmology (Kugler, The Hague, 2003).

  16. 16

    Deter, C. & Kraenert, J. High-resolution scanning laser projection display with diode-pumped solid-state lasers. Proc. SPIE 3954, 175–184 (2000).

  17. 17

    Xu, X. P. et al. High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice. Opt. Lett. 33, 408–410 (2008).

  18. 18

    Hering, P., Lay, J. P. & Stry, S. Laser in Environment and Life Sciences (Springer, Heidelberg, 2004).

  19. 19

    Fuji, T. & Fukuchi, T. Laser Remote Sensing (CRC, 2005).

  20. 20

    Kay, M. H. Fast track to fusion energy. Nature 412, 775–776 (2001).

  21. 21

    Nakai, S. & Mima, K. Laser driven inertial fusion energy: Present and prospective. Rep. Prog. Phys. 67, 321–349 (2004).

  22. 22

    Azteni, S. & Meyer- ter-Vehn, J. The Physics of Inertial Fusion: Beam-Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford Univ. Press, Oxford, 2004).

  23. 23

    Maiman, T. H. Simulated optical radiation in ruby. Nature 187, 493–94 (1960).

  24. 24

    Maiman, T. H. Optical and microwave-optical experiments in ruby. Phys. Rev. Lett. 4, 546–566 (1960).

  25. 25

    Geusic, E., Marcos, H. M. & van Uitert, L. G. Laser oscillation in Nd doped yttrium aluminum, yttrium gallium and gadolinium garnets. Appl. Phys. Lett. 4, 182–184 (1964).

  26. 26

    Molton, P. F. Spectroscopic and laser characteristics of Ti:Al2O3 . J. Opt. Soc. Am. B 3, 125–132 (1986).

  27. 27

    Huber, G., Duczynski, E. W. & Petermann, K. Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature. IEEE J. Quant. Electron. 24, 920–923 (1988).

  28. 28

    Shiraki, K. Solid state laser material — Optical homogeneity and crystal growth of YAG. [in Japanese] Oyo Butsuri 38, 177–182 (1969).

  29. 29

    Sekino, T. & Sogabe, Y. Progress in the YAG crystal growth technique for solid state lasers. [in Japanese] Rev. Laser Eng. 21, 827–831 (1993).

  30. 30

    Collard, J., Duncan, R. C., Pressley, R. J., Sterzer, F. & Walsh, T. Interim engineering Rep. 3 — Solid State Laser Exportations. (Defense Technical Information Center, USA, 1964).

  31. 31

    Hatch, S. E., Parsons, W. F. & Weagley, R. J. Hot pressed polycrystalline CaF2:Dy2+ laser. Appl. Phys. Lett. 5, 153–154 (1964).

  32. 32

    Greskovich, C. & Wood, K. N. Fabrication of transparent ThO2-doped Y2O3 . Am. Ceram. Soc. Bull. 52, 473–478 (1973).

  33. 33

    Greskovich, C. & Chernoch, J. P. Polycrystalline ceramic laser. J. Appl. Phys. 44, 4599–4606 (1973).

  34. 34

    Greskovich, C. & Chernoch, J. P. Improved polycrystalline ceramic laser. J. Appl. Phys. 45, 4495–4502 (1974).

  35. 35

    de With, G. & van Dijk, H. J. A. Translucent Y3Al5O12 ceramic. Mater. Res. Bull. 19, 1669–1674 (1984).

  36. 36

    Mudler, C. A. & de With, G. Translucent Y3Al5O12 ceramics: Electron microscopy characterization. Solid State Ionics 16, 81–86 (1985).

  37. 37

    Sekita, M., Haneda, H., Yanagitani, T. & Shirasaki, S. Induced emission cross section of Nd: YAG ceramics. Jpn J. Appl. Phys. 67, 453–458 (1990).

  38. 38

    Ikesue, A. Polycrystalline transparent ceramics for laser application. Japanese patent 3,463,941 (1992).

  39. 39

    Ikesue, A., Kinoshita, T., Kamata, K. & Yoshida, K. Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers. J. Am. Ceram. Soc. 78, 1033–1040 (1995).

  40. 40

    Lu, J. et al. High-power Nd:Y3Al5O12 ceramic laser. Jpn J. Appl. Phys. 39, L1048–L1050 (2000).

  41. 41

    Zhang, J., An, L. Q., Liu, M., Wang, S. W. & Chen, L. D. in Proc. 3rd Laser Ceram. Symp. Paris, France, IO-S-1 (2007).

  42. 42

    Dou, C. G., Yang, O. H. & Xu, J. in Proc. 3rd Laser Ceram. Symp., Paris, France, O-C-14 (2007).

  43. 43

    Lee, S. H., Kochawattana, S., Messing, G. L. & Dumm, J. Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics. J. Am. Ceram. Soc. 89, 1945–1950 (2006).

  44. 44

    Prasad, N. S. et al. Recent progress in the development of neodymium-doped ceramic yttria. IEEE J. Sel. Top. Quant. Electron. 13, 831–837 (2007).

  45. 45

    Hulie, J. C., Gentilman, R. & Stefanik, T. S. Domestically produced ceramic YAG laser gain material for high power SSLs. Laser Source Technology for Defense and Security III 6552, 65520B (2007).

  46. 46

    Bravo, A. C., Longuest, L., Autissier, D. & Boumard, J. F. Influence of the powder preparation on the sintering of Yb-doped Sc2O3 transparent ceramics. Opt. Mater. advance online publication, 14 July 2008 (doi: 10,1016/j.optmat.2008.05.004).

  47. 47

    Lupei, V. Ceramic laser materials and the prospect for high power lasers. Opt. Mater. advance online publication, 5 June 2008 (doi: 10,1016/j.opt.mat.2008.04.007).

  48. 48

    Ivanov, M. G., Kopilov, Y. L., Osipov, V. V., Solomonov, V. I. & Chrustrov, V. R. in Proc. 3rd Laser Ceram. Symp., Paris, France O-S-3 (2007).

  49. 49

    Coble, R. L. Sintering crystalline solid II. Experimental test of diffusion models in powder compacts. J. Appl. Phys. 32, 793–799 (1961).

  50. 50

    Coble, R. L. Preparation of transparent ceramic Al2O3 . Am. Ceram. Soc. Bull. 38, 507 (1959).

  51. 51

    Takei, F., Ushijima, J. & Sakurai, M. Growth of single crystals for laser application. [in Japanese] Toshiba Review 24, 1–9 (1969).

  52. 52

    Cckayne, B., Ahesswas, M. & Gasson, B. Faceting and optical perfection in Czochralski grown garnets and ruby. J. Mater. Sci. 4, 450–456 (1969).

  53. 53

    Monchamp, R. R. The distribution coefficient of neodymium and lutetium in Czochralski grown Y3Al5O12 . J. Cryst. Growth 5, 239–242 (1969).

  54. 54

    Shoji, I., Kurimura, S., Sato, Y., Taira, T. & Ikesue, A. Optical properties and laser characteristics of highly Nd-doped YAG ceramics. Appl. Phys. Lett. 77, 939–941 (2000).

  55. 55

    Taira, T., Ikesue, A. & Yoshida, K. Diode-pumped Nd:YAG ceramics lasers. OSA Trends in Opt. Photon. Ser. 19, 430–432 (1998).

  56. 56

    Sato, Y., Taira, T. & Ikesue, A. Spectral parameters of Nd3+-ion in the polycrystalline solid-solution composed of Y3Al5O12 and Y3Sc2Al3O12 . Jpn J. Appl. Phys. 42, 5071–5074 (2003).

  57. 57

    Saikawa, J., Sato, Y., Taira, T. & Ikesue, A. Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics. Appl. Phys. Lett. 85, 1898–1900 (2004).

  58. 58

    Lu, J. et al. Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics — a new generation of solid state and optical materials. J. Alloy. Compounds 341, 220–225 (2002).

  59. 59

    Yamamoto, R. M. et al. in Proc. Adv. Solid State Photon., Nara, Japan, WC5 (2008).

  60. 60

    Ikesue, A., Kamata, K. & Yoshida, K. Synthesis of transparent Nd-doped HfO2-Y2O3 ceramics using HIP. J. Am. Ceram. Soc. 79, 359–364 (1996).

  61. 61

    Ter-Gabrielyan, N., Merkel, L. D., Newburgh, G. A., Dubinskii, M. & Ikesue, A. in Proc. Adv. Solid State Photon., Nara, Japan, TuB4 (2008).

  62. 62

    Yoda, T., Miyamoto, S., Tsuboya, H., Ikesue, A. & Yoshida, K. in CLEO 2004, San Francisco, Poster Section-III, CThT59 (2006).

  63. 63

    Tokurakawa, M. et al. Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser. Opt. Express 14, 12832–12838 (2006).

  64. 64

    Tokurakawa, M. et al. in Proc. 3rd Laser Ceram. Symp., Paris, France, O-L-2 (2007).

  65. 65

    Ikesue, A. & Aung, Y. L. Synthesis and performance of advanced ceramic lasers. J. Am. Ceram. Soc. 89, 1936–1944 (2006).

  66. 66

    Ikesue, A., Aung, Y. L., Yoda, T., Nakayama, S. & Kamimura, T. Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing. Opt. Mater. 29, 1289–1294 (2007).

  67. 67

    Kamimura, T., Okamoto, T., Aung, Y. L. & Ikesue, A. in CLEO 2007, Baltimore, Maryland, CThT6 (2007).

  68. 68

    Ikesue, A., Yoda, T., Nakayama, S., Kamimura, T. & Yoshida, K. Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing. Ann. Meeting Laser Soc. Japan, Keihanna, Japan, 21p-I-12 (2005).

  69. 69

    Matsuzawa, S. Fabrication method of Mn-Zn ferrite single crystal by solid-solid reaction. [in Japanese] Fine Cer. report 9 503–07 (1991).

  70. 70

    Imaeda, M. & Matsuzawa, S. in Proc. 1st Japan Int. SAMPE Symp. 419–424 (1989).

  71. 71

    Ikesue, A. et al. Progress in ceramic lasers. Ann. Rev. Mater. Res. 36, 397–429 (2006).

Download references


The authors would like to thank V. Lupei, R.L. Byer, S. Nakayama, Y. Iwamoto, T. Kamimura, T. Taira and T. Yamamoto for their evaluations of ceramic lasers. They would also like to thank the Air Force Office of Scientific Research (AFOSR) and the Asian Office of Aerospace Research and Development (AOARD) for their support of the development of high-power-density lasers.

Author information

Correspondence to Akio Ikesue.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ikesue, A., Aung, Y. Ceramic laser materials. Nature Photon 2, 721–727 (2008) doi:10.1038/nphoton.2008.243

Download citation

Further reading