Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures


Photonic integrated circuits are a key component1 of future telecommunication networks, where demands for greater bandwidth, network flexibility, and low energy consumption and cost must all be met. The quest for all-optical components has naturally targeted materials with extremely large nonlinearity, including chalcogenide glasses2 and semiconductors, such as silicon3 and AlGaAs (ref. 4). However, issues such as immature fabrication technology for chalcogenide glass and high linear and nonlinear losses for semiconductors motivate the search for other materials. Here we present the first demonstration of nonlinear optics in integrated silica-based glass waveguides using continuous-wave light. We demonstrate four-wave mixing, with low (5 mW) continuous-wave pump power at λ = 1,550 nm, in high-index, doped silica glass ring resonators5. The low loss, design flexibility and manufacturability of our device are important attributes for low-cost, high-performance, nonlinear all-optical photonic integrated circuits.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Device schematic and linear optical transmission spectra.
Figure 2: Experimental FWM results.
Figure 3: Idler output power and wavelength as a function of signal wavelength detuning from the ring resonance.
Figure 4: Output (idler) power versus input (pump and signal) powers.
Figure 5


  1. Eggleton, B. J., Radic, S. & Moss, D. J. Nonlinear Optics in Communications: From Crippling Impairment to Ultrafast Tools Ch. 20 (Academic Press, 2008).

    Google Scholar 

  2. Ta'eed, V. G. et al. Ultrafast all-optical chalcogenide glass photonic circuits. Opt. Express 15, 9205–9221 (2007).

    Article  ADS  Google Scholar 

  3. Salem, R. et al. Signal regeneration using low-power four-wave mixing on silicon chip. Nature Photonics 2, 35–38 (2008).

    Article  ADS  Google Scholar 

  4. Aitchison, J. S., Hutchings, D. C., Kang, J. U., Stegeman, G. I. & Villeneuve, A. The nonlinear optical properties of AlGaAs at the half band gap. IEEE J. Quant. Electron. 33, 341–348 (1997).

    Article  ADS  Google Scholar 

  5. Little, B. E. et al. Very high-order microring resonator filters for WDM applications. IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).

    Article  ADS  Google Scholar 

  6. Salem, R. et al. All-optical regeneration on a silicon chip. Opt. Express 15, 7802–7809 (2007).

    Article  ADS  Google Scholar 

  7. Ta'eed, V. G. et al. Integrated all-optical pulse regeneration in chalcogenide waveguides. Opt. Lett. 30, 2900–2902 (2005).

    Article  ADS  Google Scholar 

  8. Pelusi, M. D. et al. Ultra-high nonlinear As2S3 planar waveguide for 160-Gb s−1 optical time-division demultiplexing by four-wave mixing. IEEE Photon. Technol. Lett. 19, 1496–1498 (2007).

    Article  ADS  Google Scholar 

  9. Yeom, D. I. et al. Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. Opt. Lett. 33, 660–662 (2008).

    Article  ADS  Google Scholar 

  10. Yin, L. & Agrawal, G. P. Impact of two-photon absorption on self-phase modulation in silicon waveguides, Opt. Lett. 32, 2031–2033 (2007).

    Article  ADS  Google Scholar 

  11. Dinu, M., Quochi, F. & Garcia, H. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett. 82, 2954–2956 (2003).

    Article  ADS  Google Scholar 

  12. Asobe, M. Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching. Opt. Fiber Technol. 3, 142–148 (1997).

    Article  ADS  Google Scholar 

  13. Gattass, R. R., Svacha, G. T., Tong, L. & Mazur, E. Supercontinuum generation in submicrometer diameter silica fibers. Opt. Express 14, 9408–9414 (2006).

    Article  ADS  Google Scholar 

  14. Tong, L. et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816–819 (2003).

    Article  ADS  Google Scholar 

  15. Suntsov, S. et al. Observation of one- and two-dimensional discrete surface spatial solitons. J. Nonlinear Opt. Phys. Mater. 16, 401–426 (2007).

    Article  ADS  Google Scholar 

  16. Turner, A. C., Foster, M. A., Gaeta, A. L. & Lipson, M. Ultra-low power parametric frequency conversion in a silicon microring resonator. Opt. Express 16, 4881–4887 (2008).

    Article  ADS  Google Scholar 

  17. Absil, P. P. et al. Wavelength conversion in GaAs micro-ring resonators. Opt. Lett. 25, 554–556 (2000).

    Article  ADS  Google Scholar 

  18. Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    Article  ADS  Google Scholar 

  19. Spillane, S. M., Kippenberg, T. J. & Vahala, K. J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415, 621–623 (2002).

    Article  ADS  Google Scholar 

  20. Carmon, T. & Vahala, K. J. Visible continuous emission from a silica microphotonic device by third-harmonic generation. Nature Phys. 3, 430–435 (2007).

    Article  ADS  Google Scholar 

  21. Hydex® is a proprietary glass commercially available from Infinera Ltd.

  22. Little, B. E. A VLSI photonics platform. Opt. Fiber Commun. 2, 444–445 (2003).

    Google Scholar 

  23. Izhaky, N. et al. Development of CMOS-compatible integrated silicon photonics devices. IEEE J. Sel. Top. Quant. Electron. 12, 1688 (2006).

    Article  ADS  Google Scholar 

  24. Duchesne, D. et al. Large Kerr nonlinearity in ultra low loss high-index glass waveguides. Paper CTuS6, in IEEE/OSA Conf. for Lasers and Electro-Optics (CLEO) (IEEE, San Jose, 2008).

  25. Doerr, C. R. & Okamoto, K. Advances in planar lightwave circuits. IEEE J. Lightwave Technol. 24, 4763–4789 (2006).

    Article  ADS  Google Scholar 

  26. Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006).

    Article  ADS  Google Scholar 

  27. Fukuta, H. et al. Four-wave mixing in silicon wire waveguides. Opt. Express 13, 4629–4637 (2005).

    Article  ADS  Google Scholar 

  28. Rong, H., Kuo, Y., Liu, A. & Paniccia, M. High efficiency wavelength conversion of 10 Gb s−1 data in silicon waveguides. Opt. Express 14, 1182–1188 (2006).

    Article  ADS  Google Scholar 

  29. Van, V. et al. Optical signal processing using nonlinear semiconductor microring resonators. IEEE J. Sel. Top. Quant. Electron. 8, 705–713 (2002).

    Article  ADS  Google Scholar 

  30. Monro, T. M. & Ebendorff-Heidepriem, H. Progress in microstructured optical fibers. Annu. Rev. Mater. Res. 36, 467–495 (2006).

    Article  ADS  Google Scholar 

Download references


This work was supported by the Australian Research Council (ARC) Centres of Excellence program, the FQRNT (Le Fonds Québécois de la Recherche sur la Nature et les Technologies), the Natural Sciences and Engineering Research Council of Canada (NSERC), NSERC Strategic Projects and the INRS. L.R. wishes to acknowledge a Marie Curie Outgoing International Fellowship (contract no. 040514). We are also thankful to Y. Park and T.-J. Ahn for useful discussions and R. Helsten for technical assistance. M.L. would like to thank the Ontario Centres of Excellence program for financial support.

Author information

Authors and Affiliations


Corresponding author

Correspondence to D. J. Moss.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferrera, M., Razzari, L., Duchesne, D. et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nature Photon 2, 737–740 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing