Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Large-scale arrays of ultrahigh-Q coupled nanocavities

Abstract

Coupled microresonators are expected to play a key role in slow-light engineering and various types of light-matter interaction enhancement, especially if they are based on small and high-Q cavities. Although rapid progress has been made on microresonator performance, large-scale arrays of coupled resonators based on high-Q wavelength-sized cavities have not yet been realized. Here, we show large-scale (N > 100) ultrahigh-Q coupled nanocavity arrays based on photonic crystals. This is the first demonstration of large-scale coupled resonator arrays based on wavelength-sized cavities, in which tight-binding sinusoidal dispersion is seen. We confirm that an ultrahigh value of Q (1 × 106) is maintained, even when N is large, and the resonators exhibit very low loss characteristics with regard to light propagation. The ultrahigh value of Q and small size has enabled us to achieve ultraslow light pulse propagation with a group velocity well below 0.01c and a long group delay.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Coupled resonator based on ultrahigh-Q nanocavities.
Figure 2: Transmission spectra (red line) of coupled nanocavities for various parameters.
Figure 3: Dispersion characteristics of coupled nanocavities.
Figure 4: Quality factor and loss analysis.
Figure 5: Pulse propagation experiments.

References

  1. Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    Article  ADS  Google Scholar 

  2. Song, B. S., Noda, S., Asano, T. & Akahane, Y. Ultra-high-Q photonic double heterostructure nanocavity. Nature Mater. 4, 207–210 (2005).

    Article  ADS  Google Scholar 

  3. Tanabe, T., Notomi, M., Kuramochi, E., Shinya, A. & Taniyama, H. Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity. Nature Photon. 1, 49–52 (2007).

    Article  ADS  Google Scholar 

  4. Takahashi, Y. et al. High-Q nanocavity with a 2-ns photon lifetime. Opt. Express 15, 17206–17213 (2007).

    Article  ADS  Google Scholar 

  5. Kuramochi, E. et al. Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect. Appl. Phys. Lett. 88, 041112 (2006).

    Article  ADS  Google Scholar 

  6. Herrmann, R. et al. Ultrahigh-quality photonic crystal cavity in GaAs. Opt. Lett. 31, 1229–1231 (2006).

    Article  ADS  Google Scholar 

  7. Nozaki, K., Kita, S. & Baba, T. Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. Opt. Express 15, 7506–7514 (2007).

    Article  ADS  Google Scholar 

  8. Velha, P. et al. Ultra-high Q/V Fabry–Perot microcavity on SOI substrate. Opt. Express 15, 16090–16096 (2007).

    Article  ADS  Google Scholar 

  9. Notomi, M., Kuramochi, E. & Taniyama, H. Ultrahigh-Q nanocavity with 1D photonic gap. Opt. Express 16, 11095–11102 (2008).

    Article  ADS  Google Scholar 

  10. Zain, A. R. M., Johnson, N. P., Sorel, M. & De la Rue, R. M. Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI). Opt. Express 16, 12084–12089 (2008).

    Article  ADS  Google Scholar 

  11. Yariv, A., Xu, Y., Lee, R. K. & Scherer, A. Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24, 711–713 (1999).

    Article  ADS  Google Scholar 

  12. Yanik, M. F. & Fan, S. H. Stopping light all optically. Phys. Rev. Lett. 92, 083901 (2004).

    Article  ADS  Google Scholar 

  13. Parra, E. and Lowell, J. R. Toward applications of slow light technology. Opt. Photon. News 18, 40–45 (2007).

    Article  ADS  Google Scholar 

  14. Notomi, M. et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87, 253902 (2001).

    Article  ADS  Google Scholar 

  15. Notomi, M., Shinya, A., Mitsugi, S., Kuramochi, E. & Ryu, H. Y. Waveguides, resonators and their coupled elements in photonic crystal slabs. Opt. Express 12, 1551–1561 (2004).

    Article  ADS  Google Scholar 

  16. Vlasov, Y. A., O'Boyle, M., Hamann, H. F. & McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005).

    Article  ADS  Google Scholar 

  17. Settle, M. D. et al. Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth. Opt. Express 15, 219–226 (2007).

    Article  ADS  Google Scholar 

  18. Baba, T., Kawasaki, T., Sasaki, H., Adachi, J. & Mori, D. Large delay–bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide. Opt. Express 16, 9245–9253 (2008).

    Article  ADS  Google Scholar 

  19. Poon, J. K., Zhu, L., DeRose, G. A. & Yariv, A. Transmission and group delay of microring coupled-resonator optical waveguides. Opt. Lett. 31, 456–458 (2006).

    Article  ADS  Google Scholar 

  20. Hara, Y., Mukaiyama, T., Takeda, K. & Kuwata-Gonokami, M. Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres. Phys. Rev. Lett. 94, 203905 (2005).

    Article  ADS  Google Scholar 

  21. O'Brien, D. et al. Coupled photonic crystal heterostructure nanocavities. Opt. Express 15, 1228–1233 (2007).

    Article  ADS  Google Scholar 

  22. Xia, F. N., Sekaric, L. & Vlasov, Y. Ultracompact optical buffers on a silicon chip. Nature Photon. 1, 65–71 (2007).

    Article  ADS  Google Scholar 

  23. Soljacic, M. & Joannopoulos, J. D. Enhancement of nonlinear effects using photonic crystals. Nature Mater. 3, 211–219 (2004).

    Article  ADS  Google Scholar 

  24. Notomi, M. et al. Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Express 13, 2678–2687 (2005).

    Article  ADS  Google Scholar 

  25. Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005).

    Article  ADS  Google Scholar 

  26. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).

    Article  ADS  Google Scholar 

  27. Greentree, A. D., Tahan, C., Cole, J. H. & Hollenberg, L. C. L. Quantum phase transitions of light. Nature Phys. 2, 856–861 (2006).

    Article  ADS  Google Scholar 

  28. Hartmann, M. J., Brandao, F. & Plenio, M. B. Strongly interacting polaritons in coupled arrays of cavities. Nature Phys. 2, 849–855 (2006).

    Article  ADS  Google Scholar 

  29. Hartmann, M. J. & Plenio, M. B. Strong photon nonlinearities and photonic Mott insulators. Phys. Rev. Lett. 99, 103601 (2007).

    Article  ADS  Google Scholar 

  30. Na, N., Utsunomiya, S., Tian, L. & Yamamoto, Y. Strongly correlated polaritons in a two-dimensional array of photonic crystal microcavities. Phys. Rev. A 77, 031803 (2008).

    Article  ADS  Google Scholar 

  31. Tanabe, T., Notomi, M., Kuramochi, E. & Taniyama, H. Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities. Opt. Express 15, 7826–7839 (2007).

    Article  ADS  Google Scholar 

  32. Xu, Y., Li, Y., Lee, R. K. & Yariv, A. Scattering-theory analysis of waveguide–resonator coupling. Phys. Rev. E 62, 7389–7404 (2000).

    Article  ADS  Google Scholar 

  33. Mookherjea, S., Park, J. S., Yang, S. H. & Bandaru, P. R. Localization in silicon nanophotonic slow-light waveguides. Nature Photon. 2, 90–93 (2008).

    Article  ADS  Google Scholar 

  34. Sumetsky, M. & Eggleton, B. J. Modeling and optimization of complex photonic resonant cavity circuits. Opt. Express 11, 381–391 (2003).

    Article  ADS  Google Scholar 

  35. Chak, P. & Sipe, J. E. Minimizing finite-size effects in artificial resonance tunneling structures. Opt. Lett. 31, 2568–2570 (2006).

    Article  ADS  Google Scholar 

  36. Gersen, H. et al. Real-space observation of ultraslow light in photonic crystal waveguides. Phys. Rev. Lett. 94, 073903 (2005).

    Article  ADS  Google Scholar 

  37. Kuramochi, E., Taniyama, H., Tanabe, T., Shinya, A. & Notomi, M., Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers. Appl. Phys. Lett. 93, 111112 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H. Taniyama, M. Kato and A. Shinya for helpful discussions and support.

Author information

Authors and Affiliations

Authors

Contributions

M.N. wrote the manuscript, analysed the data and led the project. E.K. fabricated the samples, performed the experiments and analysed the data. T.T performed the time-resolved measurements.

Corresponding authors

Correspondence to Masaya Notomi or Eiichi Kuramochi.

Supplementary information

Supplementary Information

Supplementary Information (PDF 143 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Notomi, M., Kuramochi, E. & Tanabe, T. Large-scale arrays of ultrahigh-Q coupled nanocavities. Nature Photon 2, 741–747 (2008). https://doi.org/10.1038/nphoton.2008.226

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing