Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity

Abstract

We report on the first demonstration of the coupling of fully confined electrons and photons using a combination of three-dimensional photonic crystal nanocavities and quantum dots. The three dimensional photonic crystals were assembled by stacking planar components using a sophisticated micromanipulation technique. Point defects, containing embedded quantum dots, were introduced into the photonic crystals as active sites. By measuring the photoluminescence spectra of the assembly, the process by which light emitted from the quantum dots is coupled to the defect modes of a three dimensional photonic crystal was demonstrated for the first time. The characteristics of the sharp emission peaks agreed well with numerical simulations, and these were confirmed to be resonant modes by polarization measurements. The highest quality factor (Q-factor) for three dimensional photonic crystals (2,300) was achieved.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: 3D photonic crystals.
Figure 2: PL spectra of 3D photonic crystals during fabrication.
Figure 3: Polarization properties of resonant peaks.
Figure 4: Dependence of Q-factors on photonic-crystal dimensions and defect sizes.
Figure 5

References

  1. Lin, S. Y., Chow, E., Hietala, V., Villeneuve, P. R. & Joannopoulos. J. D. Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal. Science 282, 274–276 (1998).

    ADS  Article  Google Scholar 

  2. Knight, J. C., Broeng, J., Birks, T. A. & Russell, P. St. J. Photonic band gap guidance in optical fibers. Science 282, 1476–1478 (1998).

    Article  Google Scholar 

  3. Chow, E. et al. Three-dimensional control of light in a two-dimensional photonic crystal slab. Nature 407, 983–986 (2000).

    ADS  Article  Google Scholar 

  4. Temelkuran, B., Hart, S. D., Benoit, G., Joannopoulos, J. D. & Fink, Y. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420, 650–653 (2002).

    ADS  Article  Google Scholar 

  5. Loncaˇr, M., Yoshie, T., Scherer, A., Gogna, P. & Qiu, Y. M. Low-threshold photonic crystal laser. Appl. Phys. Lett. 81, 2680–2682 (2002).

    ADS  Article  Google Scholar 

  6. Nomura, M. et al. Room temperature continuous-wave lasing in photonic crystal nanocavity. Opt. Express 14, 6308–6315 (2006).

    ADS  Article  Google Scholar 

  7. Nomura, M., Iwamoto, S., Kumagai, N. & Arakawa, Y. Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor. Phys. Rev. B 75, 195313 (2007).

    ADS  Article  Google Scholar 

  8. Akahane, Y., Asano, T., Song, B. S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    ADS  Article  Google Scholar 

  9. Ryu, H. Y., Notomi, M., Kim, G. H. & Lee, Y. H. High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity. Opt. Express 12, 1708–1719 (2004).

    ADS  Article  Google Scholar 

  10. Song, B. S., Noda, S., Asano, T. & Akahane, Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nature Mater. 4, 207–210 (2005).

    ADS  Article  Google Scholar 

  11. Kwon, S. H., Sünner, T., Kamp, M. & Forchel, A. Ultrahigh-Q photonic crystal cavity created by modulating air hole radius of a waveguide. Opt. Express 16, 4605–4614 (2008).

    ADS  Article  Google Scholar 

  12. Lodahl, P. et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654–657 (2004).

    ADS  Article  Google Scholar 

  13. Fujita, M., Takahashi, S., Tanaka, Y., Asano, T. & Noda, S. Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals. Science 308, 1296–1298 (2005).

    ADS  Article  Google Scholar 

  14. Yoshie, T. et al. Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    ADS  Article  Google Scholar 

  15. Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005).

    ADS  Article  Google Scholar 

  16. Kress, A. et al. Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals. Phys. Rev. B 71, 241304 (2005).

    ADS  Article  Google Scholar 

  17. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).

    ADS  Article  Google Scholar 

  18. Englund, D. et al. Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–861 (2007).

    ADS  Article  Google Scholar 

  19. Fushman, I. et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008).

    ADS  Article  Google Scholar 

  20. Johnson, S. G., Fan, S., Villeneuve, P. R., Joannopoulos, J. D. & Kolodzieiski, L. A. Guided modes in photonic-crystal slabs. Phys. Rev. B 60, 5751–5758 (1999).

    ADS  Article  Google Scholar 

  21. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    ADS  Article  Google Scholar 

  22. Ho, K. M., Chan, C. T. & Soukoulis, C. M. Existence of a photonic gap in dielectric periodic structures. Phys. Rev. Lett. 65, 3152–3155 (1990).

    ADS  Article  Google Scholar 

  23. Arakawa, Y. & Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939–941 (1982).

    ADS  Article  Google Scholar 

  24. Cheng, C. C., Scherer, A., Arbet-Engels, V. & Yablonovitch, E. Lithographic band gap tuning in photonic band gap crystals. J. Vac. Sci. Technol. B 14, 4110–4114 (1996).

    Article  Google Scholar 

  25. Blanco, A. et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405, 437–440 (2000).

    ADS  Article  Google Scholar 

  26. Shoji, S. & Kawata, S. Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin. Appl. Phys. Lett. 76, 2668–2670 (2000).

    ADS  Article  Google Scholar 

  27. Kennedy, S. R., Brett, M. J., Toader, O. & John, S. Fabrication of tetragonal square spiral photonic crystals. Nano Lett. 2, 59–62 (2002).

    ADS  Article  Google Scholar 

  28. Deubel, M. et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nature Mater. 3, 444–447 (2004).

    ADS  Article  Google Scholar 

  29. Venkataraman, S., Schneider, G. J., Murakowski, J., Shi, S. & Prather, D. W. Fabrication of three-dimensional photonic crystals using silicon micromachining. Appl. Phys. Lett. 85, 2125–2127 (2004).

    ADS  Article  Google Scholar 

  30. Sell, C. et al. Waveguide networks in three-dimensional layer-by-layer photonic crystals. Appl. Phys. Lett. 84, 4605–4607 (2004).

    ADS  Article  Google Scholar 

  31. Qi, M. et al. A three-dimensional optical photonic crystal with designed point defects. Nature 429, 538–542 (2004).

    ADS  Article  Google Scholar 

  32. Ha, Y. H. et al. Three-dimensional network photonic crystals via cyclic size reduction/infiltration of sea urchin exoskeleton. Adv. Mater. 16, 1091–1094 (2004).

    Article  Google Scholar 

  33. Ogawa, S., Imada, M., Yoshimoto, S., Okano, M. & Noda, S. Control of light by 3D photonic crystals. Science 305, 227–229 (2004).

    ADS  Article  Google Scholar 

  34. Jun, Y., Leatherdale, C. A. & Norris, D. J. Tailoring air defects in self-assembled photonic bandgap crystals. Adv. Mater. 17, 1908–1911 (2005).

    Article  Google Scholar 

  35. Mertens, G. et al. Tuneable defect mode in a three-dimensional photonic crystal. Appl. Phys. Lett. 87, 241108 (2005).

    ADS  Article  Google Scholar 

  36. Scrimgeour, J. et al. Three-dimensional optical lithography for photonic microstructures. Adv. Mater. 18, 1557–1560 (2006).

    Article  Google Scholar 

  37. Arsenault, A. et al. Perfecting imperfection-designer defects in colloidal photonic crystals. Adv. Mater. 18, 2779–2785 (2006).

    Article  Google Scholar 

  38. Rinne, S. A., García-Santamaría, F. & Brown, P. V. Embedded cavities and waveguides in three-dimensional silicon photonic crystals. Nature Photon. 2, 52–56 (2008).

    ADS  Article  Google Scholar 

  39. Ho, K. M., Chan, C. T., Soukoulis, C. M., Biswas, R. & Sigalas, M. Photonic band gaps in three dimensions: new layer-by-layer periodic structures. Solid State Commun. 89, 413–416 (1994).

    ADS  Article  Google Scholar 

  40. Guimard, D., Tsukamoto, S., Nishioka, M. & Arakawa, Y. 1.55 µm emission from InAs/GaAs quantum dots grown by metal organic chemical vapour deposition via antimony incorporation. Appl. Phys. Lett. 89, 083116 (2006).

    ADS  Article  Google Scholar 

  41. Aoki, K. et al. Microassembly of semiconductor three-dimensional photonic crystals. Nature Mater. 2, 117–121 (2003).

    ADS  Article  Google Scholar 

  42. Okano, M., Chutinan, A. & Noda, S. Analysis and design of single-defect cavities in a three-dimensional photonic crystal. Phys. Rev. B 66, 165211 (2002).

    ADS  Article  Google Scholar 

  43. Guimard, D., Nishioka, M., Tsukamoto, S. & Arakawa, Y. High density InAs/GaAs quantum dots with enhanced photoluminescence intensity using antimony surfactant-mediated metal organic chemical vapour deposition. Appl. Phys. Lett. 89, 183124 (2006).

    ADS  Article  Google Scholar 

  44. Schneider, C. et al. Lithographic alignment to site-controlled quantum dots for device integration. Appl. Phys. Lett. 92, 183101 (2008).

    ADS  Article  Google Scholar 

  45. Maldovan, M. Layer-by-layer photonic crystal with a repeating two-layer sequence. Appl. Phys. Lett. 85, 911–913 (2004).

    ADS  Article  Google Scholar 

  46. Tang, L. & Yoshie, T. Ultra-high-Q three-dimensional photonic crystal nano-resonators. Opt. Express 15, 17254–17263 (2007).

    ADS  Article  Google Scholar 

  47. Edagawa, K., Kanoko, S. & Notomi, M. Photonic amorphous diamond structure with a 3D photonic band gap. Phys. Rev. Lett. 100, 013901 (2008).

    ADS  Article  Google Scholar 

  48. Håkansson, A. & Sánchez-Dehesa, J. Optimal design of microscaled scattering optical elements. Appl. Phys. Lett. 87, 193506 (2005).

    ADS  Article  Google Scholar 

  49. Håkansson, A., Miyazaki, H. T. & Sánchez-Dehesa, J. Inverse design for full control of spontaneous emission light emitting using scattering optical elements. Phys. Rev. Lett. 96, 153902 (2006).

    ADS  Article  Google Scholar 

  50. Håkansson, A. Cloaking of objects from electromagnetic fields by inverse design of scattering optical elements. Opt. Express 15, 4328–4334 (2007).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank H.T. Miyazaki at the National Institute for Materials Science for valuable advice on the construction of the manipulation system. This work was supported by Special Coordination Funds for Promoting Science and Technology and an IT program by the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kanna Aoki or Yasuhiko Arakawa.

Supplementary information

Supplementary Information

Supplementary Information (PDF 426 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aoki, K., Guimard, D., Nishioka, M. et al. Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity. Nature Photon 2, 688–692 (2008). https://doi.org/10.1038/nphoton.2008.202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.202

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing