Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optically mediated particle clearing using Airy wavepackets

Abstract

The Airy wavepacket solution for a free particle exhibits propagation invariance and, surprisingly, acceleration transverse to the propagation direction1. Discovered as a solution of the free-particle Schrödinger equation, Airy wavepackets have been predicted2, and in a recent major step forward, realized3 in the optical domain, but have never been used in any application. In this Letter we demonstrate the first use of the Airy light beam in optical micromanipulation4,5. Based on the characteristic intensity pattern, the beam drags particles into the main intensity maximum, which guides particles vertically along a parabolic trajectory. This unusual property of Airy beams leads to a new feature in optical micromanipulation—the removal of particles and cells from a section of a sample chamber. We term this highly robust and efficient process ‘optically mediated particle clearing’, which enables novel microfluidic applications within the colloidal and biological sciences.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The micrometre-scale ‘snowblower’ at work.
Figure 2: The clearing and guiding effect of an Airy beam.
Figure 3: Self-healing of Airy beams.
Figure 4: Self-healing of Airy beams, intuitively.

References

  1. Berry, M. V. & Balazs, N. L. Non-spreading wave packets. Am. J. Phys. 47, 264–267 (1979).

    ADS  Article  Google Scholar 

  2. Siviloglou, G. A. & Christodoulides, D. N. Accelerating finite energy Airy beams. Opt. Lett. 32, 979–981 (2007).

    ADS  Article  Google Scholar 

  3. Siviloglou, G. A., Broky, J., Dogariu, A. & Christodoulides, D. N. Observation of accelerating Airy beams. Phys. Rev. Lett. 99, 213901 (2007).

    ADS  Article  Google Scholar 

  4. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    ADS  Article  Google Scholar 

  5. Dholakia, K., Reece, P. & Gu, M. Optical micromanipulation. Chem. Soc. Rev. 37, 42–55 (2008).

    Article  Google Scholar 

  6. Mangold, K., Leiderer, P. & Bechinger, C. Phase transitions of colloidal monolayers in periodic pinning arrays. Phys. Rev. Lett. 90, 158302 (2003).

    ADS  Article  Google Scholar 

  7. MacDonald, M. P., Spalding, G. C. & Dholakia, K. Microfluidic sorting in an optical lattice. Nature 426, 421–424 (2003).

    ADS  Article  Google Scholar 

  8. Durnin, J., Miceli, J. J. & Eberly, J. H. Diffraction-free beams. Phys. Rev. Lett. 58, 1499–1501 (1987).

    ADS  Article  Google Scholar 

  9. Arlt, J., Garcés-Chávez, V., Sibbett, W. & Dholakia, K. Optical micromanipulation using a Bessel light beam. Opt. Commun. 197, 239–245 (2001).

    ADS  Article  Google Scholar 

  10. Garcés-Chávez, V., McGloin, D., Melville, H., Sibbett, W. & Dholakia, K. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 419, 145–147 (2002).

    ADS  Article  Google Scholar 

  11. C̆iz̆már, T., Garcés-Chávez, V., Dholakia, K. & Zemánek, P. Optical conveyor belt for delivery of submicron objects. Appl. Phys. Lett. 86, 174101 (2005).

    ADS  Article  Google Scholar 

  12. Besieris, I. M. & Shaarawi, A. M. A note on an accelerating finite energy Airy beam. Opt. Lett. 32, 2447–2449 (2007).

    ADS  Article  Google Scholar 

  13. Siviloglou, G. A., Broky, J., Dogariu, A. & Christodoulides, D. N. Ballistic dynamics of Airy beams. Opt. Lett. 33, 207–209 (2008).

    ADS  Article  Google Scholar 

  14. Paterson, L. et al. Light-induced cell separation in a tailored optical landscape. Appl. Phys. Lett. 87, 123901 (2005).

    ADS  Article  Google Scholar 

  15. McGloin, D., Garcés-Chávez, V. & Dholakia, K. Interfering Bessel beams for optical micromanipulation. Opt. Lett. 28, 657–659 (2003).

    ADS  Article  Google Scholar 

  16. Grier, D. G. & Roichman, Y. Holographic optical trapping. Appl. Opt. 45, 880–887 (2006).

    ADS  Article  Google Scholar 

  17. Feitosa, M. I. M. & Mesquita, O. N. Wall-drag effect on diffusion of colloidal particles near surfaces: a photon correlation study. Phys. Rev. A 44, 6677–6685 (1991).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support for this project from the UK Engineering and Physical Sciences and the University of St. Andrews. They also thank T. Čižmár for technical advice and support. K.D. is a Royal Society-Wolfson Merit Award holder.

Author information

Authors and Affiliations

Authors

Contributions

J.B. designed and performed the experiments and wrote the paper with support from the other authors. M.M. carried out the numerical simulations. K.D. planned the project. All of the authors participated in the analysis and discussion of the results.

Corresponding author

Correspondence to Kishan Dholakia.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baumgartl, J., Mazilu, M. & Dholakia, K. Optically mediated particle clearing using Airy wavepackets. Nature Photon 2, 675–678 (2008). https://doi.org/10.1038/nphoton.2008.201

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.201

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing