Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Organic plasmon-emitting diode

Abstract

Surface plasmons are hybrid modes of longitudinal electron oscillations and light fields at the interface of a metal and a dielectric1,2. Driven by advances in nanofabrication, imaging and numerical methods3,4, a wide range of plasmonic elements such as waveguides5,6, Bragg mirrors7, beamsplitters8, optical modulators9 and surface plasmon detectors10 have recently been reported. For introducing dynamic functionality to plasmonics, the rapidly growing field of organic optoelectronics11 holds strong promise due to its ease of fabrication and integration opportunities. Here, we introduce an electrically switchable surface plasmon source based on an organic light‐emitting diode. The source provides a freely propagating surface plasmon beam and is potentially useful for organic integrated photonic circuits and sensing applications. Furthermore, the demonstration of controlled coupling of surface plasmons and excitons in organic materials could prove useful for the fabrication of improved organic light-emitting diodes and organic photovoltaic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organic plasmon-emitting diode.
Figure 2: Polychromatic surface plasmon emission.

Similar content being viewed by others

References

  1. Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeit. für Physik 216, 398–410 (1968).

    Article  ADS  Google Scholar 

  2. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Mod. Phys. 111, 1–133 (Springer, 1988).

    Google Scholar 

  3. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon sub-wavelength optics. Nature 424, 824–830 (2003).

    Article  ADS  Google Scholar 

  4. Lal, S., Link, S. & Halas, N. J. Nano-optics from sensing to waveguiding. Nature Photon. 1, 641–648 (2007).

    Article  ADS  Google Scholar 

  5. Berini, P. Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures. Phys. Rev. B 61, 10484–10503 (2000).

    Article  ADS  Google Scholar 

  6. Weeber, J. C. et al. Near-field observation of surface plasmon polariton propagation on thin metal stripes. Phys. Rev. B 64, 045411 (2001).

    Article  ADS  Google Scholar 

  7. Ditlbacher, H., Krenn, J. R., Schider, G., Leitner, A. & Aussenegg, F. R. Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett. 81, 1762–1764 (2002).

    Article  ADS  Google Scholar 

  8. Drezet, A. et al. Plasmonic crystal demultiplexer and multiports. Nano Lett. 7, 1697–1700 (2007).

    Article  ADS  Google Scholar 

  9. Pacifici, D., Lezec, H. J. & Atwater, H. A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photon. 1, 402–406 (2007).

    Article  ADS  Google Scholar 

  10. Ditlbacher, H. et al. Organic diodes as monolithically integrated surface plasmon polariton detectors. Appl. Phys. Lett. 89, 161101 (2006).

    Article  ADS  Google Scholar 

  11. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    Article  ADS  Google Scholar 

  12. Weber, W. H. & Eagen, C. F. Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal. Opt. Lett. 4, 236–238 (1979).

    Article  ADS  Google Scholar 

  13. Barnes, W. L. Fluorescence near interfaces: the role of photonic mode density. J. Mod. Opt. 45, 661–699 (1998).

    Article  ADS  Google Scholar 

  14. Okamoto, K. et al. Surface-plasmon‐enhanced light emitters based on InGaN quantum wells. Nature Mater. 3, 601–605 (2004).

    Article  ADS  Google Scholar 

  15. Smith, L. H., Wasey, J. A. E. & Barnes, W. L. Light outcoupling efficiency of top-emitting organic light-emitting diodes. Appl. Phys. Lett. 84, 2986–2988 (2004).

    Article  ADS  Google Scholar 

  16. Hobson, P. A., Wedge, S., Wasey, J. A. E., Sage, I. & Barnes, W. L. Surface plasmon mediated emission from organic light emitting diodes. Adv. Mater. 14, 1393–1396 (2002).

    Article  Google Scholar 

  17. Baldo, M. A., Thompson, M. E. & Forrest, S. R. Phosphorescent materials for application to organic light emitting devices. Pure Appl. Chem. 71, 2095–2106 (1999).

    Article  Google Scholar 

  18. Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).

    Article  ADS  Google Scholar 

  19. Jabbour, G. E., Wang, J.-F. & Peyghambarian, N. High-efficiency organic electrophosphorescent devices through balance of charge injection. Appl. Phys. Lett. 80, 2026–2028 (2002).

    Article  ADS  Google Scholar 

  20. Koller, D. M. et al. Surface plasmon coupled electroluminescent emission. Appl. Phys. Lett. 92, 103304 (2008).

    Article  ADS  Google Scholar 

  21. Koller, D. M. et al. Three-dimensional SU-8 submicrometer structuring by electron beam lithography. Microelectron. Eng. 85, 1639–1641 (2008).

    Article  Google Scholar 

  22. Hecht, B., Bielefeldt, H., Novotny, L., Inouye, Y. & Pohl, D. W. Local excitation, scattering, and interference of surface plasmons. Phys. Rev. Lett. 77, 1889–1892 (1996).

    Article  ADS  Google Scholar 

  23. Drezet, A. et al. How to erase surface plasmon fringes. Appl. Phys. Lett. 89, 091117 (2006).

    Article  ADS  Google Scholar 

  24. Bouhelier, A. & Wiederrecht, G. P. Surface plasmon rainbow jets. Opt. Lett. 30, 884–886 (2005).

    Article  ADS  Google Scholar 

  25. Fukuda, T., Okada, T., Wei, B., Ichikawa, M. & Taniguchi, Y. Influence of carrier-injection efficiency on modulation rate of organic light source. Opt. Lett. 32, 1905–1907 (2007).

    Article  ADS  Google Scholar 

  26. Palik, E. D. Handbook of Optical Constants of Solids(Academic, Orlando, FL, 1985).

    Google Scholar 

  27. Hobson, P. A., Wasey, J. A. E., Sage, I. & Barnes, W. L. The role of surface plasmons in organic light-emitting diodes. IEEE J. Sel. Top. Quantum Electron. 8, 378–386 (2002).

    Article  ADS  Google Scholar 

  28. Chan, J. et al. Device optimization of tris-aluminum (Alq3) based bilayer organic light emitting diode structures. Smart Mater. Struct. 15, 92–98 (2006).

    Article  Google Scholar 

  29. Yamamoto, H., Oyamada, T., Sasabe, H. & Adachi, C. Amplified spontaneous emission under optical pumping from an organic semiconductor laser structure equipped with transparent carrier injection electrodes. Appl. Phys. Lett. 84, 1401–1403 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank G. Jakopic for fruitful discussions. NAWI Graz, Graz Advanced School of Science (GASS) and the project cluster ISOTEC (N702 SENSPHYS, N704 POLYSENS) of the national Austrian NANO initiative are acknowledged for funding this work.

Author information

Authors and Affiliations

Authors

Contributions

J.R.K., E.J.W.L. and D.M.K. conceived and designed the experiments. D.M.K. performed the experiments. D.M.K., H.D., F.R.A., A.L. and F.R. analysed the data. N.G., A.H. and E.J.W.L. contributed materials and analysis tools. D.M.K. and J.R.K. wrote the paper.

Corresponding author

Correspondence to J.R. Krenn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koller, D., Hohenau, A., Ditlbacher, H. et al. Organic plasmon-emitting diode. Nature Photon 2, 684–687 (2008). https://doi.org/10.1038/nphoton.2008.200

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.200

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing