Plasmonic photon sorters for spectral and polarimetric imaging

Article metrics


Colour cameras mimic the human eye and record only a small part of the information contained in the incoming light. Modern image sensing techniques, which subdivide the light spectrally or record information about the polarization of the incoming light, can extract much more information for applications ranging from biological studies to remote sensing1,2,3,4,5. Spectral imaging techniques6 typically rely on filters or interferometers combined with scanning or subsampling to record a spectral image ‘cube’ (which has wavelength as a third dimension). This leads to inefficient use of the incoming light and/or long recording times. Here, we show that surface plasmons enable direct recording of spectral image cubes in a single exposure. By texturing metal surfaces at the nanometre scale, incoming light is converted to surface plasmons and can then be separated according to wavelength and polarization, before being recoupled to light through subwavelength apertures that illuminate individual photodetector elements. This photon-sorting capability provides a new approach for spectral and polarimetric imaging with extremely compact device archictures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Basic bull's eye structure for photon sorting.
Figure 2: Photon-sorting efficiency of triple bull's eye structure.
Figure 3: Photon sorting with slit structures.
Figure 4: Polarization response of slit–groove lattice.


  1. 1

    Groner, W. et al. Orthogonal polarization spectral imaging: A new method for study of the microcirculation. Nature Med. 5, 1209–1213 (1999).

  2. 2

    Levenson, R. E. & Hoyt, C. C. Spectral imaging and microscopy. Am. Lab. 32, 26–34 (2000).

  3. 3

    Dickinson, M. E., Bearman G., Tille S., Lansford, R. & Fraser, S. E. Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. Biotechniques 31, 1272–1278 (2001).

  4. 4

    Stenflo, J. O. & Povel, H. Astronomical polarimeter with 2D detector arrays. Appl. Opt. 24, 3893–3898 (1985).

  5. 5

    Landgrebe, D. A., Serpico S. B., Crawford, M. M. & Singhroy, V. Introduction to the special issue on analysis of hyperspectral image data. IEEE Trans Geosci. Remote 39, 1343–1345 (2001).

  6. 6

    Harvey, A. R., Beale, J. E., Greenaway, A. H., Hanlon, T. J. & Williams, J. W. Technology options for imaging spectrometry. Proc. SPIE 4132, 13–24 (2000).

  7. 7

    Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

  8. 8

    Zayats, A. V., Smolyaninov, I. I. & Maradudin, A. A. Nano-optics of surface plasmon polaritons. Phys. Rep. 408, 131–314 (2005).

  9. 9

    Genet, C. & Ebbesen, T. W. Light in tiny holes. Nature 445, 39–46 (2007).

  10. 10

    Mikhailov, V., Wurtz, G., Elliot, J., Bayvel, P. & Zayats, A. V. Dispersing light with surface plasmon polaritonic crystals. Phys. Rev. Lett. 99, 083901 (2007).

  11. 11

    Zia, R., Schuller, J. A., Chandran, A. & Brongersma, M. L. Plasmonics: the next chip-scale technology. Mater. Today 9, 20–27 (2006).

  12. 12

    Thio, T., Pellerin, K. M., Linke, R. A., Lezec, H. J. & Ebbesen, T. W. Enhanced light transmission through a single subwavelength aperture. Opt. Lett. 26, 1972–1974 (2001).

  13. 13

    Nahata, A., Linke, R. A., Ishi, T. & Ohashi, K. Enhanced nonlinear optical conversion from a periodically nanostructured metal film. Opt. Lett. 28, 423–425 (2003).

  14. 14

    Garcia-Vidal, F. J., Lezec, H. J., Ebbesen, T. W. & Martin-Moreno, L. Multiple paths to enhance optical transmission through a subwavelength slit. Phys. Rev. Lett. 90, 213901 (2003).

  15. 15

    Genet, C., van Exeter, M. P. & Woerdman, J. P. Fano-type interpretation of red-shifts and red tails in hole array transmission spectra. Opt. Commun. 225, 331–336 (2003).

  16. 16

    Sarrazin, M., Vigneron, J.-P. & Vigoureux, J.-M. Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes. Phys. Rev. B 67, 085415 (2003).

  17. 17

    Ishi, T., Fujikata, J. & Ohashi, K. Large optical transmission through a single subwavelength hole associated with a sharp-apex grating. Jpn J. Appl. Phys. 44, L170–L172 (2005).

  18. 18

    Garcia-Vidal, F. J., Martin-Moreno, L., Lezec, H. J. & Ebbesen, T. W. Focusing light with a single subwavelength aperture flanked by surface corrugations. Appl. Phys. Lett. 83, 4500–4502 (2003).

  19. 19

    Bayer, B. E. Colour imaging array. US patent 3,971,065 (1976).

  20. 20

    Garini, Y., Young, I. T. & McNamara, G. Spectral imaging: principles and applications. Cytometry 69A, 735–747 (2006).

  21. 21

    Tyo, J. S., Goldstein, D. L., Chenault, D. B. & Straw, J. Review of passive imaging polarimetry for remote sensing applications. Appl Opt. 45, 5453–5469 (2006).

  22. 22

    Merril, R. B. Colour separation in an active pixel cell imaging array using a triple-well structure. US patent 5,965,875 (1999).

  23. 23

    Descour, M. & Dereniak, E. Computed tomography imaging spectrometer—experimental calibration and reconstruction results. Appl. Opt. 34, 4817–4826 (1995).

  24. 24

    Harvey, A. R. & Fletcher-Holmes, D. R. High-throughput snapshot spectral imaging in two dimensions. Proc. SPIE 4959, 46–54 (2003).

  25. 25

    Lezec, H. J. et al. Beaming light from a subwavelength aperture. Science 297, 820–822 (2002).

  26. 26

    Martin-Moreno, L., Garcia-Vidal, F. J., Lezec, H. J., Degiron, A. & Ebbesen, T. W. Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations. Phys. Rev. Lett. 90, 167401 (2003).

  27. 27

    Ishi, T., Fujikata, J., Makita, K., Baba, T. & Ohashi, K. Si nano-photodiode with a surface plasmon antenna. Jpn J. Appl. Phys. 44, L364–L366 (2005).

Download references


The authors thank the European Community, project no. IST-FP6-034506 ‘PLEAS’. The authors are grateful for the support of O. Mahboub, J.-Y. Laluet and F. Przybilla.

Author information

Correspondence to Eric Laux or Cyriaque Genet or Torbjorn Skauli or Thomas W. Ebbesen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Laux, E., Genet, C., Skauli, T. et al. Plasmonic photon sorters for spectral and polarimetric imaging. Nature Photon 2, 161–164 (2008) doi:10.1038/nphoton.2008.1

Download citation

Further reading