Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stable generation of GeV-class electron beams from self-guided laser–plasma channels

Abstract

Table-top laser-driven plasma accelerators are gaining attention for their potential use in miniaturizing future high-energy accelerators. By irradiating gas jet targets with ultrashort intense laser pulses, the generation of quasimonoenergetic electron beams was recently observed. Currently, the stability of beam generation and the ability to scale to higher electron beam energies are critical issues for practical laser acceleration. Here, we demonstrate the first generation of stable GeV-class electron beams from stable few-millimetre-long plasma channels in a self-guided wakefield acceleration process. As primary evidence of the laser wakefield acceleration in a bubble regime, we observed a boost of both the electron beam energy and quality by reducing the plasma density and increasing the plasma length in a 1-cm-long gas jet. Subsequent three-dimensional simulations show the possibility of achieving even higher electron beam energies by minimizing plasma bubble elongation, and we anticipate dramatic increases in beam energy and quality in the near future. This will pave the way towards ultracompact, all-optical electron beam accelerators and their applications in science, technology and medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the laser wakefield acceleration experiment.
Figure 2: Energy scaling of quasimonoenergetic electron beams.
Figure 3: Stable multi-hundred-MeV quasimonoenergetic electron beams.
Figure 4: GeV-class quasimonoenergetic electron beams.
Figure 5: Three-dimensional PIC simulation results using the VORPAL code.

Similar content being viewed by others

References

  1. Perry, M. D. & Mourou, G. Terawatt to petawatt subpicosecond lasers. Science 264, 917–924 (1994).

    Article  ADS  Google Scholar 

  2. Mourou, G., Tajima, T. & Bulanov, S. V. Optics in the relativistic regime. Rev. Mod. Phys. 78, 309–371 (2006).

    Article  ADS  Google Scholar 

  3. Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979).

    Article  ADS  Google Scholar 

  4. Thomas, A. G. R. et al. Effect of laser-focusing conditions on propagation and monoenergetic electron production in laser-wakefield accelerators. Phys. Rev. Lett. 98, 095004 (2007).

    Article  ADS  Google Scholar 

  5. Faure, J. et al. A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004).

    Article  ADS  Google Scholar 

  6. Mangles, S. P. D. et al. Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431, 535–538 (2004).

    Article  ADS  Google Scholar 

  7. Geddes, C. G. R. et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004).

    Article  ADS  Google Scholar 

  8. Pukhov, A. & Meyer-ter-Vehn, J. Laser wakefield acceleration: the highly non-linear broken-wave regime. Appl. Phys. B. Lasers Opt. 74, 355–361 (2002).

    Article  ADS  Google Scholar 

  9. Patel, N. The plasma revolution. Nature 449, 133–135 (2007).

    Article  ADS  Google Scholar 

  10. Hidding, B. et al. Generation of quasimonoenergetic electron bunches with 80 fs laser pulses. Phys. Rev. Lett. 96, 105004 (2006).

    Article  ADS  Google Scholar 

  11. Leemans, W. P. et al. GeV electron beams from a centimetre-scale accelerator. Nature Phys. 2, 696–699 (2006).

    Article  ADS  Google Scholar 

  12. Karsch, S. et al. GeV-scale electron acceleration in a gas-filled capillary discharge waveguide. New J. Phys. 9, 415 (2007).

    Article  ADS  Google Scholar 

  13. Tsung, F. S. et al. Simulation of monoenergetic electron generation via laser wakefield accelerators for 5–25 TW lasers. Phys. Plasmas 13, 056708 (2006).

    Article  ADS  Google Scholar 

  14. Maksimchuk, A. et al. Energy scaling of quasi-monoenergetic electron beams from laser wakefields driven by 40 TW ultra-short pulses. Appl. Phys. B. 89, 201–207 (2007).

    Article  ADS  Google Scholar 

  15. Lu, W. et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. ST-AB 10, 061301 (2007).

    ADS  Google Scholar 

  16. Hafz, N. M. et al. Dependence of the electron beam parameters on the stability of laser propagation in a laser wakefield accelerator. Appl. Phys. Lett. 90, 151501 (2007).

    Article  ADS  Google Scholar 

  17. Faure, J. et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737–739 (2006).

    Article  ADS  Google Scholar 

  18. Umstadter, D., Kim, J.-K. & Dodd, E. Laser injection of ultrashort electron pulses into wakefield plasma waves. Phys. Rev. Lett. 76, 2073–2076 (1996).

    Article  ADS  Google Scholar 

  19. Esarey, E. et al. Electron injection into plasma wakefields by colliding laser pulses. Phys. Rev. Lett. 79, 2682–2685 (1997).

    Article  ADS  Google Scholar 

  20. Hur, M. S., Gupta, D. N. & Suk, H. Enhanced electron trapping by a static longitudinal magnetic field in laser wakefield acceleration. Phys. Lett. A 372, 2684–2687 (2008).

    Article  ADS  Google Scholar 

  21. Nieter, C. & Cary, J. R. VORPAL: a versatile plasma simulation code. J. Comput. Phys. 196, 448–473 (2004).

    Article  ADS  Google Scholar 

  22. Jeong, T. M. et al. Wavefront correction and customization of focal spot of 100 TW Ti:sapphire laser system. Jpn J. Appl. Phys. 46, 7724–7730 (2007).

    Article  ADS  Google Scholar 

  23. Hosokai, T. et al. Supersonic gas jet target for generation of relativistic electrons with 12 TW-50 fs laser pulse. Proc. EPAC 2002, 981–983 (2002).

  24. Hosokai, T. et al. Effect of a laser prepulse on a narrow-cone ejection of MeV electrons from a gas jet irradiated by an ultrashort laser pulse. Phys. Rev. E 67, 036407 (2003).

    Article  ADS  Google Scholar 

  25. Kando, M. et al. Electron acceleration by a nonlinear wakefield generated by ultrashort (23 fs) high-peak-power laser pulses in plasma. Phys. Rev. E 71, 015403 (R) (2005).

    Article  ADS  Google Scholar 

  26. Hosokai, T. et al. Effect of external static magnetic field on the emittance and total charge of electron beams generated by laser-wakefield acceleration. Phys. Rev. Lett. 97, 075004 (2006).

    Article  ADS  Google Scholar 

  27. Glinec, Y. et al. Absolute calibration for a broad range single shot electron spectrometer. Rev. Sci. Instrum. 77, 103301 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S.W. Kang for his technical support during the experiment. We acknowledge useful discussions with H.T. Kim, Y.C. Noh, H. Kotaki, M. Uesaka, K. Nakajima and T. Tajima. This work was supported by the Ministry of Knowledge and Economy of Korea through the Ultrashort Quantum Beam Facility Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongmin Lee.

Supplementary information

Supplementary Information

Stable generation of GeV–class electron beam from self–guided laser–plasma channels (PDF 3264 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hafz, N., Jeong, T., Choi, I. et al. Stable generation of GeV-class electron beams from self-guided laser–plasma channels. Nature Photon 2, 571–577 (2008). https://doi.org/10.1038/nphoton.2008.155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.155

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing