Massively parallel X-ray holography

Article metrics

Abstract

Advances in the development of free-electron lasers offer the realistic prospect of nanoscale imaging on the timescale of atomic motions. We identify X-ray Fourier-transform holography1,2,3 as a promising but, so far, inefficient scheme to do this. We show that a uniformly redundant array4 placed next to the sample, multiplies the efficiency of X-ray Fourier transform holography by more than three orders of magnitude, approaching that of a perfect lens, and provides holographic images with both amplitude- and phase-contrast information. The experiments reported here demonstrate this concept by imaging a nano-fabricated object at a synchrotron source, and a bacterial cell with a soft-X-ray free-electron laser, where illumination by a single 15-fs pulse was successfully used in producing the holographic image. As X-ray lasers move to shorter wavelengths we expect to obtain higher spatial resolution ultrafast movies of transient states of matter.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental geometry and imaging.
Figure 2: Massively parallel holography at high resolutions.
Figure 3: Ultrafast holographic imaging with iterative phase extension beyond the nanofabrication limit of the URA.

References

  1. 1

    Stroke, G. W. Introduction to Coherent Optics and Holography (Academic Press, New York, 1969).

  2. 2

    McNulty, I. et al. High-resolution imaging by Fourier transform X-ray holography. Science 256, 1009–1012 (1992).

  3. 3

    Eisebitt, S. et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432, 885–888 (2004).

  4. 4

    Fenimore, E. E. & Cannon, T. M. Coded aperture imaging with uniformly redundant arrays. Appl. Opt. 17, 337–347 (1978).

  5. 5

    Hammond, J. H. The Camera Obscura: A Chronicle (Adam Hilger, Bristol, 1981).

  6. 6

    Nugent, K. A., Chapman, H. N. & Kato, Y. Incoherent soft X-ray holography. J. Mod. Opt. 38, 1957–1971 (1991).

  7. 7

    Dicke, R. H. Scatter-hole cameras for X-rays and gamma rays. Astrophys. J. 153, L101–L106 (1968).

  8. 8

    Ables, J. G. Fourier transform photography: a new method for X-ray astronomy. Proc. Astron. Soc. Aust. 4, 172–173 (1968).

  9. 9

    Caroli, E., Stephen, J. B., di Cocco, G., Natalucci, L. & Spizzichino, A. Coded aperture imaging in X- and gamma-ray astronomy. Space Sci. Rev. 45, 349–403 (1987).

  10. 10

    Swindell, W. & Barrett, H. H. Radiological Imaging: The Theory of Image Formation, Detection and Processing (ed. Barrett, H. H.) (Academic Press, New York, 1996).

  11. 11

    Fenimore, E. E., Cannon, T. M., Van Hulsteyn, D. B. & Lee, P. Uniformly redundant array imaging of laser driven compressions: preliminary results. Appl. Opt. 18, 945–947 (1979).

  12. 12

    Cunningham, M. et al. First-generation hybrid compact Compton imager. IEEE Nucl. Sci. Symposium Conference Record 1, 312–315 (2005).

  13. 13

    Harwit, M. & Sloane, N. J. A. Hadamard Transform Optics (Academic Press, New York, 1979).

  14. 14

    Schlotter, W. et al. Multiple reference Fourier transform holography with soft X rays. Appl. Phys. Lett. 89, 163112 (2006).

  15. 15

    Collier, R., Burkhardt, C. & Lin, L. Optical Holography (Academic Press, New York, 1971).

  16. 16

    Szöke, A. Holographic microscopy with a complicated reference. J. Image. Sci. Technol. 41, 332–341 (1997).

  17. 17

    He, H. et al. Use of extended and prepared reference objects in experimental Fourier transform X-ray holography. Appl. Phys. Lett. 85, 2454–2456 (2004).

  18. 18

    Beetz, T. et al. Apparatus for X-ray diffraction microscopy and tomography of cryo specimens. Nucl. Instrum. Meth. Phys. Res. A 545, 459–468 (2005).

  19. 19

    Chapman, H. N. et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Phys. 2, 839–843 (2006).

  20. 20

    Chapman, H. N. et al. High-resolution ab initio three-dimensional X-ray diffraction microscopy. J. Opt. Soc. Am. A 23, 1179–1200 (2006).

  21. 21

    Ackermann, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nature Photonics 1, 336–342 (2007).

  22. 22

    Bajt, S. et al. A camera for coherent diffractive imaging and holography with a soft-X-ray free electron laser. Appl. Opt. 47, 1673–1683 (2008).

  23. 23

    Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Potential for femtosecond imaging of biomolecules with X rays. Nature 406, 752–757 (2000).

  24. 24

    Chapman, H. N. et al. Femtosecond time-delay X-ray holography. Nature 448, 676–679 (2007).

  25. 25

    Wang, Y. et al. Phase-coherent, injection-seeded, table-top soft-X-ray lasers at 18.9 nm and 13.9 nm. Nature Photonics 2, 94–98 (2008).

  26. 26

    Fenimore, E. E. & Weston, G. S. Fast delta Hadamard transform. Appl. Opt. 20, 3058–3067 (1981).

  27. 27

    Marchesini, S. A unified evaluation of iterative projection algorithms for phase retrieval. Rev. Sci. Instrum. 78, 011301 (2007).

  28. 28

    Marchesini, S. et al. X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 68, 140101(R) (2003).

  29. 29

    Chao, W., Harteneck, B. D., Liddle, J. A., Anderson, E. H. & Attwood, D. T. Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 435, 1210–1213 (2005).

  30. 30

    Mesler, B. L., Fischer, P., Chao, W., Anderson, E. H. & Kim, D. -H. Soft X-ray imaging of spin dynamics at high spatial and temporal resolution. J. Vac. Sci. Technol. B 25, 2598–2602 (2007).

Download references

Acknowledgements

We are grateful to L. Fabris for discussions, the staff of FLASH and ALS for help, and to D.A. Fletcher for Spiroplasma samples. This work was supported by the Lawrence Livermore National Laboratory under Department of Energy contracts W-7405-Eng-48 and DE-AC52-07NA27344; the Advanced Light Source; the National Centre for Electron Microscopy; the Centre for X-ray Optics at Lawrence Berkeley Laboratory under Department of Energy contract DE-AC02-05CH11231; the Stanford Linear Accelerator Centre under Department of Energy contract DE-AC02-76-SF00515; the European Union (TUIXS); The Swedish Research Councils, the Deutsche Forschungsgemeinschaft-Cluster of Excellence through the Munich-Centre for Advanced Photonics; the Natural Sciences and Engineering Research Council of Canada to M.B.; and the Sven and Lilly Lawskis Foundation of Sweden to M.M.S.

Author information

S.M. conceived the experiment after a discussion with L. Fabris and H.N.C. A.E.S. prepared samples for ALS S. Boutet, M.J.B., J.W.S., and J.Y.L. prepared samples for FLASH. C.C., M.R.H., S.M., A.E.S., D.A.S., and J.C.H.S. designed and performed the experiment at ALS A.B., M.J.B., S. Bajt, S. Boutet, H.N.C., M.F., J.H., S.P.H.-R., S.M., and M.M.S. designed and performed the experiment at FLASH. S.M. and S. Boutet processed the data. J.H., M.R.H., S.M. and J.C.H.S. wrote the paper with contributions from all.

Correspondence to Stefano Marchesini.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marchesini, S., Boutet, S., Sakdinawat, A. et al. Massively parallel X-ray holography. Nature Photon 2, 560–563 (2008) doi:10.1038/nphoton.2008.154

Download citation

Further reading