Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Massively parallel X-ray holography

Abstract

Advances in the development of free-electron lasers offer the realistic prospect of nanoscale imaging on the timescale of atomic motions. We identify X-ray Fourier-transform holography1,2,3 as a promising but, so far, inefficient scheme to do this. We show that a uniformly redundant array4 placed next to the sample, multiplies the efficiency of X-ray Fourier transform holography by more than three orders of magnitude, approaching that of a perfect lens, and provides holographic images with both amplitude- and phase-contrast information. The experiments reported here demonstrate this concept by imaging a nano-fabricated object at a synchrotron source, and a bacterial cell with a soft-X-ray free-electron laser, where illumination by a single 15-fs pulse was successfully used in producing the holographic image. As X-ray lasers move to shorter wavelengths we expect to obtain higher spatial resolution ultrafast movies of transient states of matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental geometry and imaging.
Figure 2: Massively parallel holography at high resolutions.
Figure 3: Ultrafast holographic imaging with iterative phase extension beyond the nanofabrication limit of the URA.

Similar content being viewed by others

References

  1. Stroke, G. W. Introduction to Coherent Optics and Holography (Academic Press, New York, 1969).

    Google Scholar 

  2. McNulty, I. et al. High-resolution imaging by Fourier transform X-ray holography. Science 256, 1009–1012 (1992).

    Article  ADS  Google Scholar 

  3. Eisebitt, S. et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432, 885–888 (2004).

    Article  ADS  Google Scholar 

  4. Fenimore, E. E. & Cannon, T. M. Coded aperture imaging with uniformly redundant arrays. Appl. Opt. 17, 337–347 (1978).

    Article  ADS  Google Scholar 

  5. Hammond, J. H. The Camera Obscura: A Chronicle (Adam Hilger, Bristol, 1981).

    Google Scholar 

  6. Nugent, K. A., Chapman, H. N. & Kato, Y. Incoherent soft X-ray holography. J. Mod. Opt. 38, 1957–1971 (1991).

    Article  ADS  Google Scholar 

  7. Dicke, R. H. Scatter-hole cameras for X-rays and gamma rays. Astrophys. J. 153, L101–L106 (1968).

    Article  ADS  Google Scholar 

  8. Ables, J. G. Fourier transform photography: a new method for X-ray astronomy. Proc. Astron. Soc. Aust. 4, 172–173 (1968).

    Article  ADS  Google Scholar 

  9. Caroli, E., Stephen, J. B., di Cocco, G., Natalucci, L. & Spizzichino, A. Coded aperture imaging in X- and gamma-ray astronomy. Space Sci. Rev. 45, 349–403 (1987).

    Article  ADS  Google Scholar 

  10. Swindell, W. & Barrett, H. H. Radiological Imaging: The Theory of Image Formation, Detection and Processing (ed. Barrett, H. H.) (Academic Press, New York, 1996).

    Google Scholar 

  11. Fenimore, E. E., Cannon, T. M., Van Hulsteyn, D. B. & Lee, P. Uniformly redundant array imaging of laser driven compressions: preliminary results. Appl. Opt. 18, 945–947 (1979).

    Article  ADS  Google Scholar 

  12. Cunningham, M. et al. First-generation hybrid compact Compton imager. IEEE Nucl. Sci. Symposium Conference Record 1, 312–315 (2005).

    Article  Google Scholar 

  13. Harwit, M. & Sloane, N. J. A. Hadamard Transform Optics (Academic Press, New York, 1979).

    MATH  Google Scholar 

  14. Schlotter, W. et al. Multiple reference Fourier transform holography with soft X rays. Appl. Phys. Lett. 89, 163112 (2006).

    Article  ADS  Google Scholar 

  15. Collier, R., Burkhardt, C. & Lin, L. Optical Holography (Academic Press, New York, 1971).

    Google Scholar 

  16. Szöke, A. Holographic microscopy with a complicated reference. J. Image. Sci. Technol. 41, 332–341 (1997).

    Google Scholar 

  17. He, H. et al. Use of extended and prepared reference objects in experimental Fourier transform X-ray holography. Appl. Phys. Lett. 85, 2454–2456 (2004).

    Article  ADS  Google Scholar 

  18. Beetz, T. et al. Apparatus for X-ray diffraction microscopy and tomography of cryo specimens. Nucl. Instrum. Meth. Phys. Res. A 545, 459–468 (2005).

    Article  ADS  Google Scholar 

  19. Chapman, H. N. et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Phys. 2, 839–843 (2006).

    Article  ADS  Google Scholar 

  20. Chapman, H. N. et al. High-resolution ab initio three-dimensional X-ray diffraction microscopy. J. Opt. Soc. Am. A 23, 1179–1200 (2006).

    Article  ADS  Google Scholar 

  21. Ackermann, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nature Photonics 1, 336–342 (2007).

    Article  ADS  Google Scholar 

  22. Bajt, S. et al. A camera for coherent diffractive imaging and holography with a soft-X-ray free electron laser. Appl. Opt. 47, 1673–1683 (2008).

    Article  ADS  Google Scholar 

  23. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Potential for femtosecond imaging of biomolecules with X rays. Nature 406, 752–757 (2000).

    Article  ADS  Google Scholar 

  24. Chapman, H. N. et al. Femtosecond time-delay X-ray holography. Nature 448, 676–679 (2007).

    Article  ADS  Google Scholar 

  25. Wang, Y. et al. Phase-coherent, injection-seeded, table-top soft-X-ray lasers at 18.9 nm and 13.9 nm. Nature Photonics 2, 94–98 (2008).

    Article  ADS  Google Scholar 

  26. Fenimore, E. E. & Weston, G. S. Fast delta Hadamard transform. Appl. Opt. 20, 3058–3067 (1981).

    Article  ADS  Google Scholar 

  27. Marchesini, S. A unified evaluation of iterative projection algorithms for phase retrieval. Rev. Sci. Instrum. 78, 011301 (2007).

    Article  ADS  Google Scholar 

  28. Marchesini, S. et al. X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 68, 140101(R) (2003).

    Article  ADS  Google Scholar 

  29. Chao, W., Harteneck, B. D., Liddle, J. A., Anderson, E. H. & Attwood, D. T. Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 435, 1210–1213 (2005).

    Article  ADS  Google Scholar 

  30. Mesler, B. L., Fischer, P., Chao, W., Anderson, E. H. & Kim, D. -H. Soft X-ray imaging of spin dynamics at high spatial and temporal resolution. J. Vac. Sci. Technol. B 25, 2598–2602 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to L. Fabris for discussions, the staff of FLASH and ALS for help, and to D.A. Fletcher for Spiroplasma samples. This work was supported by the Lawrence Livermore National Laboratory under Department of Energy contracts W-7405-Eng-48 and DE-AC52-07NA27344; the Advanced Light Source; the National Centre for Electron Microscopy; the Centre for X-ray Optics at Lawrence Berkeley Laboratory under Department of Energy contract DE-AC02-05CH11231; the Stanford Linear Accelerator Centre under Department of Energy contract DE-AC02-76-SF00515; the European Union (TUIXS); The Swedish Research Councils, the Deutsche Forschungsgemeinschaft-Cluster of Excellence through the Munich-Centre for Advanced Photonics; the Natural Sciences and Engineering Research Council of Canada to M.B.; and the Sven and Lilly Lawskis Foundation of Sweden to M.M.S.

Author information

Authors and Affiliations

Authors

Contributions

S.M. conceived the experiment after a discussion with L. Fabris and H.N.C. A.E.S. prepared samples for ALS S. Boutet, M.J.B., J.W.S., and J.Y.L. prepared samples for FLASH. C.C., M.R.H., S.M., A.E.S., D.A.S., and J.C.H.S. designed and performed the experiment at ALS A.B., M.J.B., S. Bajt, S. Boutet, H.N.C., M.F., J.H., S.P.H.-R., S.M., and M.M.S. designed and performed the experiment at FLASH. S.M. and S. Boutet processed the data. J.H., M.R.H., S.M. and J.C.H.S. wrote the paper with contributions from all.

Corresponding author

Correspondence to Stefano Marchesini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchesini, S., Boutet, S., Sakdinawat, A. et al. Massively parallel X-ray holography. Nature Photon 2, 560–563 (2008). https://doi.org/10.1038/nphoton.2008.154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing