Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions

Abstract

Frequency mixing an ultrafast-pulse laser's fundamental and second-harmonic fields in semiconductors1,2, atomic gases3,4, and on metal surfaces5 generates a directional electrical current for which the magnitude and polarity depend upon the relative phase between these two fields1,2,3,4,5. As this current occurs on the timescale of the duration of the laser pulse, in the case of ultrafast lasers (<100 fs), this process can generate electromagnetic radiation at terahertz frequencies. Although such terahertz generation has been observed in semiconductors6 and air7,8,9,10,11,12,13, the terahertz generation mechanism is not well understood and the terahertz yield has not been optimized. Here, we demonstrate a coherent control scheme to optimize terahertz generation in gases, yielding a new source of high-energy (>5 µJ), super-broadband terahertz radiation (75 THz) as well as an enhanced accompanying third harmonic. We also present a unifying explanation for such extremely broad electromagnetic radiation generation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental layout for B-dot probe, third harmonic and broadband THz characterization.
Figure 2: Broadband THz energy measurements with the pyroelectric detector.
Figure 3: Terahertz spectral measurements with Michelson interferometry.
Figure 4: B-dot probe measurements.
Figure 5: Anticorrelation between THz and THG.

Similar content being viewed by others

References

  1. Haché, A. et al. Observation of coherently controlled photocurrent in unbiased, bulk GaAs. Phys. Rev. Lett. 78, 306–309 (1997).

    Article  ADS  Google Scholar 

  2. Dupont, E., Corkum, P. B., Liu, H. C., Buchanan, M. & Wasilewski, Z. R. Phase-controlled currents in semiconductors. Phys. Rev. Lett. 74, 3596–3599 (1995).

    Article  ADS  Google Scholar 

  3. Yin, Y.-Y., Chan, C., Elliott, D. S. & Smith, A. V. Asymmetric photoelectron angular distribution from interfering photoionization processes. Phys. Rev. Lett. 69, 2353–2356 (1992).

    Article  ADS  Google Scholar 

  4. Schumacher, D. W., Weihe, F., Muller, H. G. & Bucksbaum, P. H. Phase dependence of intense field ionization: a study using two colours. Phys. Rev. Lett. 73, 1344–1347 (1994).

    Article  ADS  Google Scholar 

  5. Güdde, J., Rohleder, M., Meier, T., Koch, S. W. & Höfer, U. Time-resolved investigation of coherently controlled electric currents at a metal surface. Science 318, 1287–1291 (2007).

    Article  ADS  Google Scholar 

  6. Côte, D., Fraser, J. M., DeCamp, M., Bucksbaum, P. H. & van Driel, H. M. THz emission from coherently controlled photocurrents in GaAs. Appl. Phys. Lett. 75, 3959–3961 (1999).

    Article  ADS  Google Scholar 

  7. Cook, D. J. & Hochstrasser, R. M. Intense terahertz pulses by four-wave rectification in air. Opt. Lett. 25, 1210–1212 (2000).

    Article  ADS  Google Scholar 

  8. Kress, M., Löffler, T., Eden, S., Thomson, M. & Rokos, H. G. Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves. Opt. Lett. 29, 1120–1122 (2004).

    Article  ADS  Google Scholar 

  9. Bartel, T., Gaal, P., Reimann, K., Woerner, M. & Elsaesser, T. Generation of single-cycle THz transients with high electric-field amplitudes. Opt. Lett. 30, 2805–2807 (2005).

    Article  ADS  Google Scholar 

  10. Xie, X., Dai, J. & Zhang, X.-C. Coherent control of THz wave generation in ambient air. Phys. Rev. Lett. 96, 075005 (2006).

    Article  ADS  Google Scholar 

  11. Dai, J., Xie, X. & Zhang, X.-C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Phys. Rev. Lett. 97, 103903 (2006).

    Article  ADS  Google Scholar 

  12. Kim, K. Y., Glownia, J. H., Taylor, A. J. & Rodriguez, G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Opt. Express 15, 4577–4584 (2007).

    Article  ADS  Google Scholar 

  13. Kreβ, M. et al. Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy. Nature Phys. 2, 327–331 (2006).

    Article  ADS  Google Scholar 

  14. Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  15. Kulander, K. C., Schafer, K. J. & Krause, J. L. Super Intense Laser-Atom Physics (eds Piraux, B., L'Huillier, A. & Rzazewski, K.) 95–110 (Plenum, New York, 1993).

    Book  Google Scholar 

  16. Augst, S., Strickland, D., Meyerhofer, D. D., Chin, S. L. & Eberly, J. H. Tunnelling ionization of noble gases in a high-intensity laser field. Phys. Rev. Lett. 63, 2212–2215 (1989).

    Article  ADS  Google Scholar 

  17. Guo, C., Li, M., Nibarger, J. P. & Gibson, G. N. Single and double ionization of diatomic molecules in strong laser fields. Phys. Rev. A 58, R4271–R4274 (1998).

    Article  ADS  Google Scholar 

  18. Lide, D. R. CRC Handbook of Chemistry and Physics, 84th edn, Vol. 10, 178 (CRC Press, Boca Raton, FL, 2003).

    Google Scholar 

  19. D'Amico, C. et al. Conical forward THz emission from femtosecond-laser-beam filamentation in air. Phys. Rev. Lett. 98, 235002 (2007).

    Article  ADS  Google Scholar 

  20. Lovberg, R. H. Plasma Diagnostic Techniques (eds Huddlestone, R. H. & Leonhard, S. L.) 69–112 (Academic, New York, 1965).

    Google Scholar 

  21. Edlén, B. The refractive index of air. Metrologia 2, 71–80 (1966).

    Article  ADS  Google Scholar 

  22. Keldysh, L. V. Ionization in the field of a strong electromagnetic wave. Soc. Phys. JETP 20, 1307–1314 (1965).

    Google Scholar 

  23. Rodriguez, G., Siders, C. W., Guo, C. & Taylor, A. J. Coherent ultrafast MI-FROG spectroscopy of optical field ionization in molecular H2, N2 and O2 . IEEE J. Sel. Top. Quant. Electron. 7, 579–591 (2001).

    Article  ADS  Google Scholar 

  24. Landau, L. D. & Lifshitz, E. M. Quantum Mechanics (Pergamon, Oxford, 1977).

    MATH  Google Scholar 

  25. Ammosov, M. V., Delone, N. B. & Krainov, V. P. Tunnelling ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 64, 1191–1194 (1986).

    Google Scholar 

  26. Schlessinger, L. & Wright, J. Inverse-bremsstrahlung absorption rate in an intense laser field. Phys. Rev. A 20, 1934–1945 (1979).

    Article  ADS  Google Scholar 

  27. Ditmire, T. Simulations of heating and electron energy distribution in optical field ionized plasmas. Phys. Rev. E 54, 6735–6740 (1996).

    Article  ADS  Google Scholar 

  28. Constant, E. et al. Optimizing high harmonic generation in absorbing gases: model and experiment. Phys. Rev. Lett. 82, 1668–1671 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported through the Los Alamos National Laboratory Directed Research and Development Program for Los Alamos National Security, LLC, under the auspices of the Department of Energy, contract no. DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Contributions

A.J.T. and J.H.G. provided management oversight to this project, while K.Y.K. and G.R. planned and executed the work. K.Y.K. designed the experiment and carried out the measurements. K.Y.K. and G.R. analysed the data and performed the simulations. All authors contributed to the final manuscript.

Corresponding author

Correspondence to K. Y. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K., Taylor, A., Glownia, J. et al. Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions. Nature Photon 2, 605–609 (2008). https://doi.org/10.1038/nphoton.2008.153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing