Abstract
Slow light with a remarkably low group velocity is a promising solution for buffering and time-domain processing of optical signals. It also offers the possibility for spatial compression of optical energy and the enhancement of linear and nonlinear optical effects. Photonic-crystal devices are especially attractive for generating slow light, as they are compatible with on-chip integration and room-temperature operation, and can offer wide-bandwidth and dispersion-free propagation. Here the background theory, recent experimental demonstrations and progress towards tunable slow-light structures based on photonic-band engineering are reviewed. Practical issues related to real devices and their applications are also discussed.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Ohtaka, K. Energy band of photons and low-energy photon diffraction. Phys. Rev. B 19, 5057–5067 (1979).
Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).
John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).
Bowden, C. M., Dowling, J. P. & Everitt, H. O. Special issue on development and applications of materials exhibiting photonic band gaps. J. Opt. Soc. Am. B 10, 280–413 (1993).
Joannopoulos, J. D., Meade, R. D. & Winn, J. N. Photonic Crystals– Moulding the Flow of Light (Princeton Univ. Press, Princeton, 1995).
Photonic Band Gap Materials (ed. Soukoulis, C. M.) (Kluwer, Dordrecht, 1996).
Scherer, A., Doll, T., Yablonovitch, E., Everitt, H. O. & Higgins, J. A. Special issue on electromagnetic crystal structures, design, synthesis, and applications. J. Lightwave Technol. 17, 1928–1930 (1999).
Photonic Crystals and Light Localization in the 21st Century (ed. Soukoulis, C. M.) (Kluwer, Dordrecht, 2001).
Krauss, T. K. & Baba, T. Feature section on photonic crystal structures and applications. IEEE J. Quantum Electron. 38, 724–956 (2002).
Roadmap on Photonic Crystals (eds Noda, S. & Baba, T.) (Kluwer, Norwell, 2003).
Photonic Crystals Physics, Fabrication and Applications (eds Inoue, K. & Ohtaka, K.) (Springer, Berlin, 2004).
Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals—Moulding the Flow of Light 2nd edn (Princeton Univ. Press, Princeton, 2008).
Baba, T., Fukaya, N. & Yonekura, J. Observation of light transmission in photonic crystal waveguides with bends. Electron. Lett. 35, 654–655 (1999).
Loncar, M., Nedeljkovic, D., Doll, T., Vuckovic, J. & Scherer, A. Waveguiding in planar photonic crystals. Appl. Phys. Lett. 77, 1937–1939 (2000).
Smith, C. J. M. et al. Low-loss channel waveguides with two-dimensional photonic crystal boundaries. Appl. Phys. Lett. 77, 2813–2815 (2000).
Noda, S., Chutinan, A. & Imada, M. Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature 407, 608–610 (2000).
Notomi, M. et al. Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates. Electron. Lett. 37, 293–295 (2001).
Baba, T. et al. Light propagation characteristics of straight single line defect optical waveguides in a photonic crystal slab fabricated into a silicon-on-insulator substrate. IEEE J. Quant. Electron. 38, 743–752 (2002).
Sugimoto, Y. et al. Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length. Opt. Express 12, 1090–1096 (2004).
Notomi, M. et al. Waveguides, resonators and their coupled elements in photonic crystal slabs. Opt. Express 12, 1551–1561 (2004).
Bogaerts, W. et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightwave Technol. 23, 401–412 (2005).
Dulkeith, E., McNab, S. J. & Vlasov, Y. A. Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides. Phys. Rev. B 72, 115102 (2005).
Kuramochi, E. et al. Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs. Phys. Rev. B. 72, 161318 (2005).
Letartre, X. et al. Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes. Appl. Phys. Lett. 79, 2312–2314 (2001).
Notomi, M. et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87, 253902 (2001).
Inoue, K. et al. Observation of small group velocity in two-dimensional AlGaAs-based photonic crystal slabs. Phys. Rev. B 65, 121308 (2002).
Asano, T., Kiyota, K., Kumamoto, D., Song, B. S. & Noda, S. Time-domain measurement of picosecond light-pulse propagation in a two-dimensional photonic crystal-slab waveguide. Appl. Phys. Lett. 84, 4690–4692 (2004).
Baba, T., Mori, D., Inoshita, K. & Kuroki, Y. Light localization in line defect photonic crystal waveguides. IEEE J. Quant. Electron. 10, 484–491 (2004).
Vlasov, Y. A., O'Boyle, M., Hamann, H. F. & McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005).
Gersen, H. et al. Real-space observation of ultraslow light in photonic crystal waveguides. Phys. Rev. Lett. 94, 073903 (2005).
Finlayson, C. E. et al. Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight. Phys. Rev. Lett. 73, 016619 (2006).
Engelen, R. J. P. et al. The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides. Opt. Express 14, 1658–1672 (2006).
Tanaka, Y. et al. Effect of third-order dispersion on subpicosecond pulse propagation in photonic-crystal waveguides. Appl. Phys. Lett. 89, 131101 (2006).
Baba, T. & Mori, D. Slowlight engineering in photonic crystals. J. Phys. D 40, 2659–2665 (2007).
Krauss, T. Slow light in photonic crystal waveguides. J. Phys. D 40, 2666–2670 (2007).
Mori, D. & Baba, T. Dispersion-controlled optical group delay device by chirped photonic crystal waveguides. Appl. Phys. Lett. 85, 1101–1103 (2004).
Tucker, R. S., Ku, P.-C. & Chang-Hasnain, C. J. Slow-light optical buffers – capabilities and fundamental limitations. J. Lightwave Technol. 23, 4046–4066 (2005).
Khurgin, J. B. Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: Comparative analysis. J. Opt. Soc. Am. B 22, 1062–1074 (2005).
Miller, D. A. B. Fundamental limit to linear one-dimensional slow light structures. Phys. Rev. Lett. 99, 203903 (2007).
Mori, D. & Baba, T. Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide. Opt. Express 13, 9398–9408 (2005).
Povinelli, M. L., Johnson, S. G. & Joannopoulos, J. D. Slow-light, band-edge waveguides for tunable time delays. Opt. Express 13, 7145–7159 (2005).
Mori, D., Kubo, S., Sasaki, H. & Baba, T. Experimental demonstration of wideband dispersion-compensated slow light by a chirped photonic crystal directional coupler. Opt. Express 15, 5264–5270 (2007).
Huang, S. C., Kato, M., Kuramochi, E., Lee, C. P. & Notomi, M. Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides. Opt. Express 15, 3543–3549 (2007).
Kawasaki, T., Mori, D. & Baba, T. Experimental observation of slow light in photonic crystal coupled waveguides. Opt. Express 15, 10274–10281 (2007).
Baba, T., Kawasaki, T., Sasaki, H., Adachi, J. & Mori, D. Large delay-bandwidth product and delay tuning of slow light pulse in photonic crystal coupled waveguide. Opt. Express 16, 9245–9253 (2008).
Sakai, A., Kato, I., Mori, D. & Baba, T. Anomalous low group velocity and low dispersion in simple photonic crystal line defect waveguides. Tech. Dig. IEEE/LEOS Annual Meet. ThQ5 (Puerto Rico, IEEE/LEOS, 2004).
Petrov, A. Y. & Eich, M. Zero dispersion at small group velocities in photonic crystal waveguides. Appl. Phys. Lett. 85, 4866–4868 (2004).
Settle, M. D. et al. Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth. Opt. Express 15, 219–226 (2007).
Frandsen, L. H., Lavrinenko, A. V., Fage-Pedersen, J. & Borel, P. I. Photonic crystal waveguides with semislow light and tailored dispersion properties. Opt. Lett. 14, 9444–9446 (2006).
Kubo, S., Mori, D. & Baba, T. Low-group-velocity and low-dispersion slow light in photonic crystal waveguides. Opt. Lett. 32, 2981–2983 (2007).
Li, J., White, T. P., O'Faolain, L., Gomez-Iglesias, A. & Krauss, T. F. Systematic design of flat band slow light in photonic crystal waveguides. Opt. Express 16, 6227–6232 (2008).
Hamachi, Y., Kubo, S. & Baba, T. Low dispersion slow light and nonlinearity enhancement in lattice-shifted photonic crystal waveguide. Tech. Dig. Quantum Electron. Laser Sci. Conf. QTuC1 (San Jose, OSA, 2008).
Yariv, A., Xu, Y., Lee, R. K. & Scherer, A. Coupled-resonator optical waveguide– A proposal and analysis. Opt. Lett. 24, 711–713 (1999).
Oliver, S. et al. Miniband transmission in photonic crystal coupled resonator optical waveguide. Opt. Lett. 26, 1019–1021 (2001).
Hosomi, K. & Katsuyama, T. A dispersion compensator using coupled defects in a photonic crystal. IEEE J. Quant. Electron. 38, 825–829 (2002).
Martinez, A. et al. Group velocity and dispersion model of coupled-cavity waveguides in photonic crystals. J. Opt. Soc. Am. A 20, 147–150 (2003).
Kim, W. J., Kuang, W. & O'Brien, J. D. Dispersion characteristics of photonic crystal coupled resonator optical waveguides. Opt. Express 25, 3431–3437 (2003).
Fukamachi, T., Hosomi, K., Katsuyama, T. & Arakawa, Y. Group-delay properties of coupled-defect structures in photonic crystals. Jpn J. Appl. Phys. 43, L449–L452 (2004).
Khurgin, J. B. Expanding the bandwidth of slow-light photonic devices based on coupled resonators. Opt. Lett. 30, 513–515 (2005).
Poon, J. K., Zhu, L., De Rose, G. A. & Yariv, A. Transmission and group delay of microring coupled-resonator optical waveguides. Opt. Lett. 31, 456–458 (2006).
Xia, F., Sekaric, L. & Vlasov, Y. Ultracompact optical buffers on a silicon chip. Nature Photon. 1, 65–71 (2007).
Kuramochi, E., Tanabe, T., Taniyama, H., Kato, M. & Notomi, M. Observation of heavy photon state in ultrahigh-Q photonic crystal coupled resonator chain. Tech. Dig. Quantum Phys. & Laser Sci. Conf. QMG2 (Baltimore, OSA, 2007).
Yanik, M. F. & Fan, S. Stopping light all optically. Phys. Rev. Lett. 92, 083901 (2004).
Yanik, M. F., Suh, W., Wang, Z. & Fan, S. Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency. Phys. Rev. Lett. 93, 233903 (2004).
Khurgin, J. B. Adiabatically tunable optical delay lines and their performance limitations. Opt. Lett. 30, 2778–2780 (2005).
Notomi, M. & Mitsugi, S. Wavelength conversion via dynamic refractive index tuning of a cavity. Phys. Rev. A 73, 051803 (2006).
Preble, S. F., Xu, Q. & Lipson, M. Changing the colour of light in a silicon resonator. Nature Photon. 1, 293–296 (2007).
Tanaka, Y. et al. Dynamic control of the Q factor in a photonic crystal nanocavity. Nature Mater. 6, 862–865 (2007).
Xu, Q., Dong, P. & Lipson, M. Breaking the delay-bandwidth limit in a photonic structure. Nature Phys. 3, 406–410 (2007).
Tanaka. Y. et al. Group velocity dependence of propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes. Electron. Lett. 40, 174–176 (2004).
Hughes, S. et al. Extrinsic optical scattering loss in photonic crystal waveguides—Role of fabrication disorder and photon group velocity. Phys. Rev. Lett. 94, 033903 (2005).
Mookherjea, S. & Oh, A. Effect of disorder on slow light velocity in optical slow-wave structures. Opt. Lett. 32, 289–291 (2007).
O'Faolain, L. et al. Dependence of extrinsic loss on group velocity in photonic crystal waveguides. Opt. Express 15, 13129–13138 (2007).
Soljačić, M. et al. Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. J. Opt. Soc. Am. B 19, 2052–2059 (2002).
Konorov, S. O. et al. Coherent anti-Stokes Raman scattering of slow light in a hollow planar photonic band-gap waveguide. Laser Phys. 12, 818–824 (2002).
Soljačić, M. et al. Nonlinear photonic crystal microdevices for optical integration. Opt. Lett. 28, 637–639 (2003).
Soljačić, M. & Joannopoulos, J. D. Enhancement of nonlinear effects using photonic crystals. Nature Mater. 3, 211–219 (2004).
Nakamura, H. et al. Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks. Opt. Express 12, 6606–6614 (2004).
Camargo, E. A., Chong, H. M. & De la Rue, R. M. 2D photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure. Opt. Express 12, 588–592 (2004).
Raineri, F. et al. Optical amplification in two-dimensional photonic crystals. Appl. Phys. Lett. 86, 091111 (2005).
Chu, T., Yamada, H., Ishida, S. & Arakawa, Y. Thermooptic switch based on photonic-crystal line-defect waveguides. IEEE Photon. Technol. Lett. 17, 2083–2085 (2005).
Oda, H. & Inoue, K. Observation of Raman scattering in GaAs photonic-crystal slab waveguides. Opt. Express 14, 6659–6667 (2006).
Mizuta, E., Watanabe, H. & Baba, T. All semiconductor low-Δ photonic crystal waveguide for semiconductor optical amplifier. Jpn J. Appl. Phys. 45, 6116–6120 (2006).
Mingaleev, S. F., Miroshnichenko, A. E. & Kivshar, Y. S. Low-threshold bistability of slow light in photonic-crystal waveguides. Opt. Express 15, 12380–12385 (2007).
Hirano, G. & Koyama, F. Slowing light in Bragg reflector waveguide with tilt coupling scheme. Tech. Dig. IEEE/LEOS Annual Meet. 86–87 (Orlando, IEEE/LEOS, 2007).
Saleh, B. E. A., Teich, M. C. Fundamentals of Photonics 2nd edn (Wiley, New Jersey, 2007).
Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).
Julsgaard, B., Sherson, J., Cirac, J. I., Fiurásek, J. & Polzik, E. S. Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004).
Longdell, J. J., Fraval, E., Sellars, M. J. & Manson, N. B. Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid. Phys. Rev. Lett. 95, 063601 (2005).
Sakai, A., Hara, G. & Baba, T. Propagation characteristics of ultra-high Δ optical waveguide on silicon-on-insulator substrate. Jpn J. Appl. Phys. 40, 383–385 (2001).
Silicon Photonics: An Introduction (eds Reed, G. T. & Knight, A. P.) (Wiley, New Jersey, 2004).
Optical Interconnects The Silicon Approach (eds Pavesi, L. & Guillot, G.) (Springer, Berlin, 2006).
Dulkeith, E., Xia, F., Schares, L., Green, W. M. J. & Vlasov, Y. A. Group index and group velocity dispersion in silicon-on-insulator photonic wires. Opt. Express 14, 3853–3863 (2006).
Yamada, K. et al. Singlemode lightwave transmission in SOI-type photonic-crystal line-defect waveguides with phase-shifted holes. Electron. Lett. 38, 74–75 (2002).
Watanabe, Y. et al. Broadband waveguide intersection with low-crosstalk in two-dimensional photonic crystal circuits by sing topology optimization. Opt. Express 14, 9502–9507 (2006).
Ishii, S., Nozaki, K. & Baba, T. Photonic molecules in photonic crystal. Jpn J. Appl. Phys. 45, 6108–6111 (2006).
Nakagawa, A., Ishii, S. & Baba, T. Photonic molecule lasers composed of GaInAsP microdisks. Appl. Phys. Lett. 86, 041112 (2005).
Ishii, S. & Baba, T. Bistable lasing in twin microdisk photonic molecule. Appl. Phys. Lett. 87, 181102 (2005).
Astratov, V. N., Franchak, J. P. & Ashili, S. P. Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder. Appl. Phys. Lett. 85, 5508–5510 (2004).
Möller, B. M., Woggon, U. & Artemyev, M. V. Coupled-resonator optical waveguides doped with nanocrystals. Opt. Lett. 30, 2116–2118 (2005).
Hara, Y., Mukaiyama, T., Takeda, K. & Kuwata-Gonokami, M. Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres. Phys. Rev. Lett. 94, 203905 (2005).
Tanabe, T. et al. Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities. Appl. Phys. Lett. 90, 031115 (2007).
Smith, D. D., Chang, H., Fuller, K. A., Rosenberger, A. T. & Boyd R. W. Coupled-resonator-induced transparency. Phys. Rev. A 69, 063804 (2004).
Xu, Q. et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett. 96, 123901 (2006).
Suematsu, Y. & Furuya, K. Propagation mode and scattering loss of a two-dimensional dielectric waveguide with gradual distribution of refractive index. IEEE Trans. Microwave Theory Tech. MTT-20, 524–531 (1972).
Lee, K. K., Lim, D. R., Kimerling, L. C., Shin, J. & Cerrina, F. Fabrication of ultralow-loss Si/SiO2 waveguide by roughness reduction. Opt. Lett. 26, 1888–1890 (2001).
Yamada, K. et al. Microphotonics devices based on silicon wire waveguiding system. IEICE Trans. Electron. E87-C, 351–358 (2004).
Vlasov, Y. A. & McNab, S. J. Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12, 1622–1631 (2004).
Tsang, H. K. et al. Optical dispersion, TPA and SPM in Si waveguides at 1.5 μm wavelength. Appl. Phys. Lett. 80, 416–418 (2002).
Rieger, G. W., Virk, K. S. & Young, J. F. Nonlinear propagation of ultrafast 1.5 μm pulses in high-index contrast silicon-on-insulator waveguides. Appl. Phys. Lett. 84, 900–902 (2004).
Yamada, H. et al. Nonlinear-optic silicon-nanowire waveguides. Jpn J. Appl. Phys. 44, 6541–6545 (2005).
Dulkeith, E., Vlasov, Y. A., Chen, X., Panoiu, N. C. & Osgood Jr, R. M. Self-phase-modulation in submicron silicon-on-insulator photonic wires. Opt. Express 14, 5524–5534 (2006).
Oda, H. et al. Self-phase modulation in photonic-crystal-slab line-defect waveguides. Appl. Phys. Lett. 90, 231102 (2007).
Vlasov, Y. A. & McNab, S. J. Coupling into the slow light mode in slab-type photonic crystal waveguides. Opt. Lett. 31, 50–52 (2006).
de Sterke, C. M. et al. Efficient slow light coupling into photonic crystals. Opt. Express 15, 10984–10990 (2007).
Ozaki, N. et al. High transmission recovery of slow light in a photonic crystal waveguide using a hetero group velocity waveguide. Opt. Express 15, 7974–7983 (2007).
Yang, L. et al. Topology optimisation of slow light coupling to photonic crystal waveguides. Electron. Lett. 43, 923–924 (2007).
Meier, M. et al. Laser action from two-dimensional distributed feedback in photonic crystals. Appl. Phys. Lett. 74, 7–9 (1999).
Sakoda, K., Ohtaka, K. & Ueta, T. Low-threshold laser oscillation due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals. Opt. Express 4, 481–489 (1999).
Noda, S., Yokoyama, M., Imada, M., Chutinan, A. & Mochizuki, M. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science 293, 1123–1125 (2001).
Notomi, M., Suzuki, H. & Tamamura, T. Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps. Appl. Phys. Lett. 78, 1325–1327 (2001).
Altug, H. & Vuckovic, J. Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays. Appl. Phys. Lett. 86, 111102 (2005).
Sugitatsu, A. & Noda, S. Room temperature operation of 2D photonic crystal slab defect-waveguide laser with optical pump. Electron. Lett. 39, 213–215 (2003).
Kiyota, K., Kise, T., Yokouchi, N., Ide, T. & Baba, T. Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation. Appl. Phys. Lett. 88, 201904 (2006).
Watanabe, H. & Baba, T. High-efficiency photonic crystal microlaser integrated with a passive waveguide. Opt. Express 16, 2694–2698 (2008).
Clap, R., Dimitropoulos, D., Raghunathan, V., Han, Y. & Jalali, B. Observation of stimulated Raman amplification in silicon waveguides. Opt. Express 11, 1731–1739 (2003).
Espinola, R. L., Dadap, J. I., Osgood Jr, R. M., McNab, S. J. & Vlasov, Y. A. Raman amplification in ultrasmall silicon-on-insulator wire waveguides. Opt. Express 12, 3713–3718 (2004).
Xu, Q., Almeida, R. & Lipson, M. Demonstration of high Raman gain in a submicrometer-size silicon-on-insulator waveguide. Opt. Lett. 30, 35–37 (2005).
Espinola, R. J., Dadap, J. I., Osgood, Jr, R. M., McNab, S. J. & Vlasov, Y. A. C-band wavelength conversion in silicon photonic wire waveguides. Opt. Express 13, 4341–4349 (2005).
Fukuda, H. et al. Four-wave mixing in silicon wire waveguides. Opt. Express 13, 4629–4637 (2005).
Okawachi, Y. et al. All-optical slow-light on a photonic chip. Opt. Express 14, 2317–2322 (2006).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Baba, T. Slow light in photonic crystals. Nature Photon 2, 465–473 (2008). https://doi.org/10.1038/nphoton.2008.146
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2008.146
This article is cited by
-
Tamm-cavity terahertz detector
Nature Communications (2024)
-
Three-dimensional flat Landau levels in an inhomogeneous acoustic crystal
Nature Communications (2024)
-
Slow light topological photonics with counter-propagating waves and its active control on a chip
Nature Communications (2024)
-
Optical demultiplexing via rainbow trapping in graded-index photonic crystal waveguides
Optical and Quantum Electronics (2024)
-
Analysing group indices and dispersion characteristics of engineered photonic crystal waveguides using artificial neural network
Journal of Optics (2024)