Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Slow light in photonic crystals

Abstract

Slow light with a remarkably low group velocity is a promising solution for buffering and time-domain processing of optical signals. It also offers the possibility for spatial compression of optical energy and the enhancement of linear and nonlinear optical effects. Photonic-crystal devices are especially attractive for generating slow light, as they are compatible with on-chip integration and room-temperature operation, and can offer wide-bandwidth and dispersion-free propagation. Here the background theory, recent experimental demonstrations and progress towards tunable slow-light structures based on photonic-band engineering are reviewed. Practical issues related to real devices and their applications are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Waveguides, photonic bands and group-index characteristics.
Figure 2: Schematic operation, band diagrams and group-index spectra of dispersion-free slow-light devices.
Figure 3: A PC coupled waveguide and its light-propagation characteristics.
Figure 4: A PCW modified for zero-dispersion slow light.
Figure 5: A CROW consisting of cascaded microrings fabricated on an SOI substrate.
Figure 6: Delay tuning of slow-light pulses in a chirped PC coupled waveguide.

Similar content being viewed by others

References

  1. Ohtaka, K. Energy band of photons and low-energy photon diffraction. Phys. Rev. B 19, 5057–5067 (1979).

    ADS  Google Scholar 

  2. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    ADS  Google Scholar 

  3. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    ADS  Google Scholar 

  4. Bowden, C. M., Dowling, J. P. & Everitt, H. O. Special issue on development and applications of materials exhibiting photonic band gaps. J. Opt. Soc. Am. B 10, 280–413 (1993).

    ADS  Google Scholar 

  5. Joannopoulos, J. D., Meade, R. D. & Winn, J. N. Photonic Crystals– Moulding the Flow of Light (Princeton Univ. Press, Princeton, 1995).

    MATH  Google Scholar 

  6. Photonic Band Gap Materials (ed. Soukoulis, C. M.) (Kluwer, Dordrecht, 1996).

  7. Scherer, A., Doll, T., Yablonovitch, E., Everitt, H. O. & Higgins, J. A. Special issue on electromagnetic crystal structures, design, synthesis, and applications. J. Lightwave Technol. 17, 1928–1930 (1999).

    ADS  Google Scholar 

  8. Photonic Crystals and Light Localization in the 21st Century (ed. Soukoulis, C. M.) (Kluwer, Dordrecht, 2001).

  9. Krauss, T. K. & Baba, T. Feature section on photonic crystal structures and applications. IEEE J. Quantum Electron. 38, 724–956 (2002).

    ADS  Google Scholar 

  10. Roadmap on Photonic Crystals (eds Noda, S. & Baba, T.) (Kluwer, Norwell, 2003).

  11. Photonic Crystals Physics, Fabrication and Applications (eds Inoue, K. & Ohtaka, K.) (Springer, Berlin, 2004).

  12. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals—Moulding the Flow of Light 2nd edn (Princeton Univ. Press, Princeton, 2008).

    MATH  Google Scholar 

  13. Baba, T., Fukaya, N. & Yonekura, J. Observation of light transmission in photonic crystal waveguides with bends. Electron. Lett. 35, 654–655 (1999).

    Google Scholar 

  14. Loncar, M., Nedeljkovic, D., Doll, T., Vuckovic, J. & Scherer, A. Waveguiding in planar photonic crystals. Appl. Phys. Lett. 77, 1937–1939 (2000).

    ADS  Google Scholar 

  15. Smith, C. J. M. et al. Low-loss channel waveguides with two-dimensional photonic crystal boundaries. Appl. Phys. Lett. 77, 2813–2815 (2000).

    ADS  Google Scholar 

  16. Noda, S., Chutinan, A. & Imada, M. Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature 407, 608–610 (2000).

    ADS  Google Scholar 

  17. Notomi, M. et al. Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates. Electron. Lett. 37, 293–295 (2001).

    Google Scholar 

  18. Baba, T. et al. Light propagation characteristics of straight single line defect optical waveguides in a photonic crystal slab fabricated into a silicon-on-insulator substrate. IEEE J. Quant. Electron. 38, 743–752 (2002).

    ADS  Google Scholar 

  19. Sugimoto, Y. et al. Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length. Opt. Express 12, 1090–1096 (2004).

    ADS  Google Scholar 

  20. Notomi, M. et al. Waveguides, resonators and their coupled elements in photonic crystal slabs. Opt. Express 12, 1551–1561 (2004).

    ADS  Google Scholar 

  21. Bogaerts, W. et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightwave Technol. 23, 401–412 (2005).

    ADS  Google Scholar 

  22. Dulkeith, E., McNab, S. J. & Vlasov, Y. A. Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides. Phys. Rev. B 72, 115102 (2005).

    ADS  Google Scholar 

  23. Kuramochi, E. et al. Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs. Phys. Rev. B. 72, 161318 (2005).

    ADS  Google Scholar 

  24. Letartre, X. et al. Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes. Appl. Phys. Lett. 79, 2312–2314 (2001).

    ADS  Google Scholar 

  25. Notomi, M. et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87, 253902 (2001).

    ADS  Google Scholar 

  26. Inoue, K. et al. Observation of small group velocity in two-dimensional AlGaAs-based photonic crystal slabs. Phys. Rev. B 65, 121308 (2002).

    ADS  Google Scholar 

  27. Asano, T., Kiyota, K., Kumamoto, D., Song, B. S. & Noda, S. Time-domain measurement of picosecond light-pulse propagation in a two-dimensional photonic crystal-slab waveguide. Appl. Phys. Lett. 84, 4690–4692 (2004).

    ADS  Google Scholar 

  28. Baba, T., Mori, D., Inoshita, K. & Kuroki, Y. Light localization in line defect photonic crystal waveguides. IEEE J. Quant. Electron. 10, 484–491 (2004).

    Google Scholar 

  29. Vlasov, Y. A., O'Boyle, M., Hamann, H. F. & McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005).

    ADS  Google Scholar 

  30. Gersen, H. et al. Real-space observation of ultraslow light in photonic crystal waveguides. Phys. Rev. Lett. 94, 073903 (2005).

    ADS  Google Scholar 

  31. Finlayson, C. E. et al. Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight. Phys. Rev. Lett. 73, 016619 (2006).

    Google Scholar 

  32. Engelen, R. J. P. et al. The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides. Opt. Express 14, 1658–1672 (2006).

    ADS  Google Scholar 

  33. Tanaka, Y. et al. Effect of third-order dispersion on subpicosecond pulse propagation in photonic-crystal waveguides. Appl. Phys. Lett. 89, 131101 (2006).

    ADS  Google Scholar 

  34. Baba, T. & Mori, D. Slowlight engineering in photonic crystals. J. Phys. D 40, 2659–2665 (2007).

    ADS  Google Scholar 

  35. Krauss, T. Slow light in photonic crystal waveguides. J. Phys. D 40, 2666–2670 (2007).

    ADS  Google Scholar 

  36. Mori, D. & Baba, T. Dispersion-controlled optical group delay device by chirped photonic crystal waveguides. Appl. Phys. Lett. 85, 1101–1103 (2004).

    ADS  Google Scholar 

  37. Tucker, R. S., Ku, P.-C. & Chang-Hasnain, C. J. Slow-light optical buffers – capabilities and fundamental limitations. J. Lightwave Technol. 23, 4046–4066 (2005).

    ADS  Google Scholar 

  38. Khurgin, J. B. Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: Comparative analysis. J. Opt. Soc. Am. B 22, 1062–1074 (2005).

    ADS  Google Scholar 

  39. Miller, D. A. B. Fundamental limit to linear one-dimensional slow light structures. Phys. Rev. Lett. 99, 203903 (2007).

    ADS  Google Scholar 

  40. Mori, D. & Baba, T. Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide. Opt. Express 13, 9398–9408 (2005).

    ADS  Google Scholar 

  41. Povinelli, M. L., Johnson, S. G. & Joannopoulos, J. D. Slow-light, band-edge waveguides for tunable time delays. Opt. Express 13, 7145–7159 (2005).

    ADS  Google Scholar 

  42. Mori, D., Kubo, S., Sasaki, H. & Baba, T. Experimental demonstration of wideband dispersion-compensated slow light by a chirped photonic crystal directional coupler. Opt. Express 15, 5264–5270 (2007).

    ADS  Google Scholar 

  43. Huang, S. C., Kato, M., Kuramochi, E., Lee, C. P. & Notomi, M. Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides. Opt. Express 15, 3543–3549 (2007).

    ADS  Google Scholar 

  44. Kawasaki, T., Mori, D. & Baba, T. Experimental observation of slow light in photonic crystal coupled waveguides. Opt. Express 15, 10274–10281 (2007).

    ADS  Google Scholar 

  45. Baba, T., Kawasaki, T., Sasaki, H., Adachi, J. & Mori, D. Large delay-bandwidth product and delay tuning of slow light pulse in photonic crystal coupled waveguide. Opt. Express 16, 9245–9253 (2008).

    ADS  Google Scholar 

  46. Sakai, A., Kato, I., Mori, D. & Baba, T. Anomalous low group velocity and low dispersion in simple photonic crystal line defect waveguides. Tech. Dig. IEEE/LEOS Annual Meet. ThQ5 (Puerto Rico, IEEE/LEOS, 2004).

  47. Petrov, A. Y. & Eich, M. Zero dispersion at small group velocities in photonic crystal waveguides. Appl. Phys. Lett. 85, 4866–4868 (2004).

    ADS  Google Scholar 

  48. Settle, M. D. et al. Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth. Opt. Express 15, 219–226 (2007).

    ADS  Google Scholar 

  49. Frandsen, L. H., Lavrinenko, A. V., Fage-Pedersen, J. & Borel, P. I. Photonic crystal waveguides with semislow light and tailored dispersion properties. Opt. Lett. 14, 9444–9446 (2006).

    Google Scholar 

  50. Kubo, S., Mori, D. & Baba, T. Low-group-velocity and low-dispersion slow light in photonic crystal waveguides. Opt. Lett. 32, 2981–2983 (2007).

    ADS  Google Scholar 

  51. Li, J., White, T. P., O'Faolain, L., Gomez-Iglesias, A. & Krauss, T. F. Systematic design of flat band slow light in photonic crystal waveguides. Opt. Express 16, 6227–6232 (2008).

    ADS  Google Scholar 

  52. Hamachi, Y., Kubo, S. & Baba, T. Low dispersion slow light and nonlinearity enhancement in lattice-shifted photonic crystal waveguide. Tech. Dig. Quantum Electron. Laser Sci. Conf. QTuC1 (San Jose, OSA, 2008).

  53. Yariv, A., Xu, Y., Lee, R. K. & Scherer, A. Coupled-resonator optical waveguide– A proposal and analysis. Opt. Lett. 24, 711–713 (1999).

    ADS  Google Scholar 

  54. Oliver, S. et al. Miniband transmission in photonic crystal coupled resonator optical waveguide. Opt. Lett. 26, 1019–1021 (2001).

    ADS  Google Scholar 

  55. Hosomi, K. & Katsuyama, T. A dispersion compensator using coupled defects in a photonic crystal. IEEE J. Quant. Electron. 38, 825–829 (2002).

    ADS  Google Scholar 

  56. Martinez, A. et al. Group velocity and dispersion model of coupled-cavity waveguides in photonic crystals. J. Opt. Soc. Am. A 20, 147–150 (2003).

    ADS  Google Scholar 

  57. Kim, W. J., Kuang, W. & O'Brien, J. D. Dispersion characteristics of photonic crystal coupled resonator optical waveguides. Opt. Express 25, 3431–3437 (2003).

    ADS  Google Scholar 

  58. Fukamachi, T., Hosomi, K., Katsuyama, T. & Arakawa, Y. Group-delay properties of coupled-defect structures in photonic crystals. Jpn J. Appl. Phys. 43, L449–L452 (2004).

    ADS  Google Scholar 

  59. Khurgin, J. B. Expanding the bandwidth of slow-light photonic devices based on coupled resonators. Opt. Lett. 30, 513–515 (2005).

    ADS  Google Scholar 

  60. Poon, J. K., Zhu, L., De Rose, G. A. & Yariv, A. Transmission and group delay of microring coupled-resonator optical waveguides. Opt. Lett. 31, 456–458 (2006).

    ADS  Google Scholar 

  61. Xia, F., Sekaric, L. & Vlasov, Y. Ultracompact optical buffers on a silicon chip. Nature Photon. 1, 65–71 (2007).

    ADS  Google Scholar 

  62. Kuramochi, E., Tanabe, T., Taniyama, H., Kato, M. & Notomi, M. Observation of heavy photon state in ultrahigh-Q photonic crystal coupled resonator chain. Tech. Dig. Quantum Phys. & Laser Sci. Conf. QMG2 (Baltimore, OSA, 2007).

  63. Yanik, M. F. & Fan, S. Stopping light all optically. Phys. Rev. Lett. 92, 083901 (2004).

    ADS  Google Scholar 

  64. Yanik, M. F., Suh, W., Wang, Z. & Fan, S. Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency. Phys. Rev. Lett. 93, 233903 (2004).

    ADS  Google Scholar 

  65. Khurgin, J. B. Adiabatically tunable optical delay lines and their performance limitations. Opt. Lett. 30, 2778–2780 (2005).

    ADS  Google Scholar 

  66. Notomi, M. & Mitsugi, S. Wavelength conversion via dynamic refractive index tuning of a cavity. Phys. Rev. A 73, 051803 (2006).

    ADS  Google Scholar 

  67. Preble, S. F., Xu, Q. & Lipson, M. Changing the colour of light in a silicon resonator. Nature Photon. 1, 293–296 (2007).

    ADS  Google Scholar 

  68. Tanaka, Y. et al. Dynamic control of the Q factor in a photonic crystal nanocavity. Nature Mater. 6, 862–865 (2007).

    ADS  Google Scholar 

  69. Xu, Q., Dong, P. & Lipson, M. Breaking the delay-bandwidth limit in a photonic structure. Nature Phys. 3, 406–410 (2007).

    ADS  Google Scholar 

  70. Tanaka. Y. et al. Group velocity dependence of propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes. Electron. Lett. 40, 174–176 (2004).

    Google Scholar 

  71. Hughes, S. et al. Extrinsic optical scattering loss in photonic crystal waveguides—Role of fabrication disorder and photon group velocity. Phys. Rev. Lett. 94, 033903 (2005).

    ADS  Google Scholar 

  72. Mookherjea, S. & Oh, A. Effect of disorder on slow light velocity in optical slow-wave structures. Opt. Lett. 32, 289–291 (2007).

    ADS  Google Scholar 

  73. O'Faolain, L. et al. Dependence of extrinsic loss on group velocity in photonic crystal waveguides. Opt. Express 15, 13129–13138 (2007).

    ADS  Google Scholar 

  74. Soljačić, M. et al. Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. J. Opt. Soc. Am. B 19, 2052–2059 (2002).

    ADS  Google Scholar 

  75. Konorov, S. O. et al. Coherent anti-Stokes Raman scattering of slow light in a hollow planar photonic band-gap waveguide. Laser Phys. 12, 818–824 (2002).

    Google Scholar 

  76. Soljačić, M. et al. Nonlinear photonic crystal microdevices for optical integration. Opt. Lett. 28, 637–639 (2003).

    ADS  Google Scholar 

  77. Soljačić, M. & Joannopoulos, J. D. Enhancement of nonlinear effects using photonic crystals. Nature Mater. 3, 211–219 (2004).

    ADS  Google Scholar 

  78. Nakamura, H. et al. Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks. Opt. Express 12, 6606–6614 (2004).

    ADS  Google Scholar 

  79. Camargo, E. A., Chong, H. M. & De la Rue, R. M. 2D photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure. Opt. Express 12, 588–592 (2004).

    ADS  Google Scholar 

  80. Raineri, F. et al. Optical amplification in two-dimensional photonic crystals. Appl. Phys. Lett. 86, 091111 (2005).

    ADS  Google Scholar 

  81. Chu, T., Yamada, H., Ishida, S. & Arakawa, Y. Thermooptic switch based on photonic-crystal line-defect waveguides. IEEE Photon. Technol. Lett. 17, 2083–2085 (2005).

    ADS  Google Scholar 

  82. Oda, H. & Inoue, K. Observation of Raman scattering in GaAs photonic-crystal slab waveguides. Opt. Express 14, 6659–6667 (2006).

    ADS  Google Scholar 

  83. Mizuta, E., Watanabe, H. & Baba, T. All semiconductor low-Δ photonic crystal waveguide for semiconductor optical amplifier. Jpn J. Appl. Phys. 45, 6116–6120 (2006).

    ADS  Google Scholar 

  84. Mingaleev, S. F., Miroshnichenko, A. E. & Kivshar, Y. S. Low-threshold bistability of slow light in photonic-crystal waveguides. Opt. Express 15, 12380–12385 (2007).

    ADS  Google Scholar 

  85. Hirano, G. & Koyama, F. Slowing light in Bragg reflector waveguide with tilt coupling scheme. Tech. Dig. IEEE/LEOS Annual Meet. 86–87 (Orlando, IEEE/LEOS, 2007).

  86. Saleh, B. E. A., Teich, M. C. Fundamentals of Photonics 2nd edn (Wiley, New Jersey, 2007).

    Google Scholar 

  87. Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

    ADS  Google Scholar 

  88. Julsgaard, B., Sherson, J., Cirac, J. I., Fiurásek, J. & Polzik, E. S. Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004).

    ADS  Google Scholar 

  89. Longdell, J. J., Fraval, E., Sellars, M. J. & Manson, N. B. Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid. Phys. Rev. Lett. 95, 063601 (2005).

    ADS  Google Scholar 

  90. Sakai, A., Hara, G. & Baba, T. Propagation characteristics of ultra-high Δ optical waveguide on silicon-on-insulator substrate. Jpn J. Appl. Phys. 40, 383–385 (2001).

    ADS  Google Scholar 

  91. Silicon Photonics: An Introduction (eds Reed, G. T. & Knight, A. P.) (Wiley, New Jersey, 2004).

  92. Optical Interconnects The Silicon Approach (eds Pavesi, L. & Guillot, G.) (Springer, Berlin, 2006).

  93. Dulkeith, E., Xia, F., Schares, L., Green, W. M. J. & Vlasov, Y. A. Group index and group velocity dispersion in silicon-on-insulator photonic wires. Opt. Express 14, 3853–3863 (2006).

    ADS  Google Scholar 

  94. Yamada, K. et al. Singlemode lightwave transmission in SOI-type photonic-crystal line-defect waveguides with phase-shifted holes. Electron. Lett. 38, 74–75 (2002).

    Google Scholar 

  95. Watanabe, Y. et al. Broadband waveguide intersection with low-crosstalk in two-dimensional photonic crystal circuits by sing topology optimization. Opt. Express 14, 9502–9507 (2006).

    ADS  Google Scholar 

  96. Ishii, S., Nozaki, K. & Baba, T. Photonic molecules in photonic crystal. Jpn J. Appl. Phys. 45, 6108–6111 (2006).

    ADS  Google Scholar 

  97. Nakagawa, A., Ishii, S. & Baba, T. Photonic molecule lasers composed of GaInAsP microdisks. Appl. Phys. Lett. 86, 041112 (2005).

    ADS  Google Scholar 

  98. Ishii, S. & Baba, T. Bistable lasing in twin microdisk photonic molecule. Appl. Phys. Lett. 87, 181102 (2005).

    ADS  Google Scholar 

  99. Astratov, V. N., Franchak, J. P. & Ashili, S. P. Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder. Appl. Phys. Lett. 85, 5508–5510 (2004).

    ADS  Google Scholar 

  100. Möller, B. M., Woggon, U. & Artemyev, M. V. Coupled-resonator optical waveguides doped with nanocrystals. Opt. Lett. 30, 2116–2118 (2005).

    ADS  Google Scholar 

  101. Hara, Y., Mukaiyama, T., Takeda, K. & Kuwata-Gonokami, M. Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres. Phys. Rev. Lett. 94, 203905 (2005).

    ADS  Google Scholar 

  102. Tanabe, T. et al. Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities. Appl. Phys. Lett. 90, 031115 (2007).

    ADS  Google Scholar 

  103. Smith, D. D., Chang, H., Fuller, K. A., Rosenberger, A. T. & Boyd R. W. Coupled-resonator-induced transparency. Phys. Rev. A 69, 063804 (2004).

    ADS  Google Scholar 

  104. Xu, Q. et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett. 96, 123901 (2006).

    ADS  Google Scholar 

  105. Suematsu, Y. & Furuya, K. Propagation mode and scattering loss of a two-dimensional dielectric waveguide with gradual distribution of refractive index. IEEE Trans. Microwave Theory Tech. MTT-20, 524–531 (1972).

    ADS  Google Scholar 

  106. Lee, K. K., Lim, D. R., Kimerling, L. C., Shin, J. & Cerrina, F. Fabrication of ultralow-loss Si/SiO2 waveguide by roughness reduction. Opt. Lett. 26, 1888–1890 (2001).

    ADS  Google Scholar 

  107. Yamada, K. et al. Microphotonics devices based on silicon wire waveguiding system. IEICE Trans. Electron. E87-C, 351–358 (2004).

    ADS  Google Scholar 

  108. Vlasov, Y. A. & McNab, S. J. Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12, 1622–1631 (2004).

    ADS  Google Scholar 

  109. Tsang, H. K. et al. Optical dispersion, TPA and SPM in Si waveguides at 1.5 μm wavelength. Appl. Phys. Lett. 80, 416–418 (2002).

    ADS  Google Scholar 

  110. Rieger, G. W., Virk, K. S. & Young, J. F. Nonlinear propagation of ultrafast 1.5 μm pulses in high-index contrast silicon-on-insulator waveguides. Appl. Phys. Lett. 84, 900–902 (2004).

    ADS  Google Scholar 

  111. Yamada, H. et al. Nonlinear-optic silicon-nanowire waveguides. Jpn J. Appl. Phys. 44, 6541–6545 (2005).

    ADS  Google Scholar 

  112. Dulkeith, E., Vlasov, Y. A., Chen, X., Panoiu, N. C. & Osgood Jr, R. M. Self-phase-modulation in submicron silicon-on-insulator photonic wires. Opt. Express 14, 5524–5534 (2006).

    ADS  Google Scholar 

  113. Oda, H. et al. Self-phase modulation in photonic-crystal-slab line-defect waveguides. Appl. Phys. Lett. 90, 231102 (2007).

    ADS  Google Scholar 

  114. Vlasov, Y. A. & McNab, S. J. Coupling into the slow light mode in slab-type photonic crystal waveguides. Opt. Lett. 31, 50–52 (2006).

    ADS  Google Scholar 

  115. de Sterke, C. M. et al. Efficient slow light coupling into photonic crystals. Opt. Express 15, 10984–10990 (2007).

    ADS  Google Scholar 

  116. Ozaki, N. et al. High transmission recovery of slow light in a photonic crystal waveguide using a hetero group velocity waveguide. Opt. Express 15, 7974–7983 (2007).

    ADS  Google Scholar 

  117. Yang, L. et al. Topology optimisation of slow light coupling to photonic crystal waveguides. Electron. Lett. 43, 923–924 (2007).

    Google Scholar 

  118. Meier, M. et al. Laser action from two-dimensional distributed feedback in photonic crystals. Appl. Phys. Lett. 74, 7–9 (1999).

    ADS  Google Scholar 

  119. Sakoda, K., Ohtaka, K. & Ueta, T. Low-threshold laser oscillation due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals. Opt. Express 4, 481–489 (1999).

    ADS  Google Scholar 

  120. Noda, S., Yokoyama, M., Imada, M., Chutinan, A. & Mochizuki, M. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science 293, 1123–1125 (2001).

    ADS  Google Scholar 

  121. Notomi, M., Suzuki, H. & Tamamura, T. Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps. Appl. Phys. Lett. 78, 1325–1327 (2001).

    ADS  Google Scholar 

  122. Altug, H. & Vuckovic, J. Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays. Appl. Phys. Lett. 86, 111102 (2005).

    ADS  Google Scholar 

  123. Sugitatsu, A. & Noda, S. Room temperature operation of 2D photonic crystal slab defect-waveguide laser with optical pump. Electron. Lett. 39, 213–215 (2003).

    Google Scholar 

  124. Kiyota, K., Kise, T., Yokouchi, N., Ide, T. & Baba, T. Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation. Appl. Phys. Lett. 88, 201904 (2006).

    ADS  Google Scholar 

  125. Watanabe, H. & Baba, T. High-efficiency photonic crystal microlaser integrated with a passive waveguide. Opt. Express 16, 2694–2698 (2008).

    ADS  Google Scholar 

  126. Clap, R., Dimitropoulos, D., Raghunathan, V., Han, Y. & Jalali, B. Observation of stimulated Raman amplification in silicon waveguides. Opt. Express 11, 1731–1739 (2003).

    ADS  Google Scholar 

  127. Espinola, R. L., Dadap, J. I., Osgood Jr, R. M., McNab, S. J. & Vlasov, Y. A. Raman amplification in ultrasmall silicon-on-insulator wire waveguides. Opt. Express 12, 3713–3718 (2004).

    ADS  Google Scholar 

  128. Xu, Q., Almeida, R. & Lipson, M. Demonstration of high Raman gain in a submicrometer-size silicon-on-insulator waveguide. Opt. Lett. 30, 35–37 (2005).

    ADS  Google Scholar 

  129. Espinola, R. J., Dadap, J. I., Osgood, Jr, R. M., McNab, S. J. & Vlasov, Y. A. C-band wavelength conversion in silicon photonic wire waveguides. Opt. Express 13, 4341–4349 (2005).

    ADS  Google Scholar 

  130. Fukuda, H. et al. Four-wave mixing in silicon wire waveguides. Opt. Express 13, 4629–4637 (2005).

    ADS  Google Scholar 

  131. Okawachi, Y. et al. All-optical slow-light on a photonic chip. Opt. Express 14, 2317–2322 (2006).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Baba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baba, T. Slow light in photonic crystals. Nature Photon 2, 465–473 (2008). https://doi.org/10.1038/nphoton.2008.146

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing