Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode

Abstract

The realization of semiconductor laser diodes and light-emitting diodes that emit short-wavelength ultraviolet light is of considerable interest for a number of applications including chemical/biochemical analysis, high-density data storage and material processing. Group III nitride materials are one of the most promising candidates for fabricating such devices. Here we describe an AlGaN multiple-quantum-well laser diode that emits light at 342 nm, the shortest wavelength ever reported for an electrically driven laser diode. To fabricate the laser, a low-dislocation-density AlGaN layer with an AlN mole fraction of 0.3 was grown on a sapphire substrate using a hetero facet-controlled epitaxial lateral overgrowth (hetero-FACELO) method1,2,3. An AlGaN multiple-quantum-well structure was then grown on the high-quality AlGaN layer. Lasing at a wavelength of 342.3 nm was observed under pulsed current mode at room temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AlGaN MQW UV laser diode.
Figure 2: Room-temperature emission spectra.
Figure 3: Polarized emission spectra.
Figure 4: Light output power and electrical characteristics.
Figure 5: Wide band spectrum.

Similar content being viewed by others

References

  1. Kamiyama, S. et al. UV light-emitting diode fabricated on hetero-ELO-grown Al0.22Ga0.78N with low dislocation density. Phys. Status Solidi A 192, 296–300 (2002).

    Article  ADS  Google Scholar 

  2. Liu, R. et al. Thick crack-free AlGaN films deposited by facet-controlled epitaxial lateral overgrowth. Phys. Status Solidi C 0, 2136–2140 (2003).

    Article  Google Scholar 

  3. Yoshida, H., Takagi, Y., Kuwabara, M., Amano, H. & Kan, H. Entirely crack-free ultraviolet GaN/AlGaN laser diodes grown on 2-in. sapphire substrate. Jpn J. Appl. Phys. 46, 5782–5784 (2007).

    Article  ADS  Google Scholar 

  4. Taniyasu, Y., Kasu, M. & Makimoto, T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometers. Nature 441, 325–328 (2006).

    Article  ADS  Google Scholar 

  5. Takano, T., Narita, Y., Horiuchi, A. & Kawanishi, H. Room temperature deep-ultraviolet lasing at 241.5 nm of AlGaN multiple-quantum-well laser. Appl. Phys. Lett. 84, 3567–3569 (2004).

    Article  ADS  Google Scholar 

  6. Shatalov, M., Gaevski, M., Adivarahan, V. & Khan, A. Room temperature stimulated emission from AlN at 214 nm. Jpn J. Appl. Phys. 45, L1286–L1288 (2006).

    Article  ADS  Google Scholar 

  7. Kneissl, M., Treat, D. W., Teepe, M., Miyashita, N. & Johnson, N. M. Ultraviolet AlGaN multiple-quantum-well laser diodes. Appl. Phys. Lett. 82, 4441–4443 (2003).

    Article  ADS  Google Scholar 

  8. Masui, S. et al. 365 nm ultraviolet laser diodes composed of quaternary AlInGaN alloy. Jpn J. Appl. Phys. 42, L1318–L1320 (2003).

    Article  ADS  Google Scholar 

  9. Iida, K. et al. 350.9 nm UV laser diode grown on low-dislocation-density AlGaN. Jpn J. Appl. Phys. 43, L499–L500 (2004).

    Article  ADS  Google Scholar 

  10. Edmond, J. et al. High efficiency GaN-based LEDs and lasers on SiC. J. Cryst. Growth 272, 242–250 (2004).

    Article  ADS  Google Scholar 

  11. Ito, K., Kawamoto, T., Amano, H., Hiramatsu, K. & Akasaki, I. Metalorganic vapour phase epitaxial growth and properties of GaN/Al0.1Ga0.9N layered structures. Jpn J. Appl. Phys. 30, 1924–1927 (1991).

    Article  ADS  Google Scholar 

  12. Chichibu, S., Azuhata, T., Sota, T. & Nakamura, S. Spontaneous emission of localized exciton in InGaN single and multiquantum well structure. Appl. Phys. Lett. 69, 4188–4190 (1996).

    Article  ADS  Google Scholar 

  13. Chichibu, S. F. et al. Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors. Nature Mater. 5, 810–816 (2006).

    Article  ADS  Google Scholar 

  14. Iwaya, M. et al. High-efficiency GaN/AlxGa1–xN multi-quantum well light emitter grown on low-dislocation density AlxGa1–xN. Proc. Int. Workshop on Nitride Semiconductors. IPAP Conf. Series 1, 833–836 (2000).

  15. Hirayama, H. et al. Marked enhancement of 320–360 nm ultraviolet emission in quaternary InxAlyGa1–x–yN with In-segregation effect. Appl. Phys. Lett. 80, 207–209 (2002).

    Article  ADS  Google Scholar 

  16. Takeuchi, T. et al. Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells. Jpn J. Appl. Phys. 36, L382–L385 (1997).

    Article  Google Scholar 

  17. Onuma, T. et al. Influence of internal electric field on the recombination dynamics of localized excitons in an InGaN double-quantum-well laser diode wafer operated at 450 nm. Jpn J. Appl. Phys. 42, 7276–7283 (2003).

    Article  ADS  Google Scholar 

  18. Nam, K. B., Li, J., Nakarmi, M. L., Lin, J. Y. & Jiang, H. X. Unique optical properties of AlGaN alloys and related ultraviolet emitters. Appl. Phys. Lett. 84, 5264–5266 (2004).

    Article  ADS  Google Scholar 

  19. Kawanishi, H., Senuma, M. & Nukui, T. Anisotropic polarization characteristics of lasing and spontaneous surface and edge emissions from deep-ultraviolet (λ ≈ 240 nm) AlGaN multiple-quantum-well lasers. Appl. Phys. Lett. 89, 041126 (2006).

    Article  ADS  Google Scholar 

  20. Bremser, M. D. Electrical and transport properties of AlGaN. Gallium Nitride and Related Semiconductors (eds Edgar, J. H., Strite, S., Akasaki, I,. Amano, H. & Wetzel, C.) (The Institution of Electrical Engineers, London, 1999).

    Google Scholar 

  21. Li, J., Oder, T. N., Nakarmi, M. L., Lin, J. Y. & Jiang, H. X. Optical and electrical properties of Mg-doped p-type AlxGa1–xN. Appl. Phys. Lett. 80, 1210–1212 (2002).

    Article  ADS  Google Scholar 

  22. Pophristic, M., Guo, S. P. & Peres, B. High-conductivity n-AlGaN with high Al mole fraction grown by metalorganic vapour phase deposition. Appl. Phys. Lett. 82, 4289–4291 (2003).

    Article  ADS  Google Scholar 

  23. Hiramatsu, K. et al. Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO). J. Cryst. Growth 221, 316–326 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Hiroshi Amano of Meijo University for his valuable discussions and Masamichi Yamanishi of Hamamatsu Photonics for his helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harumasa Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, H., Yamashita, Y., Kuwabara, M. et al. A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode. Nature Photon 2, 551–554 (2008). https://doi.org/10.1038/nphoton.2008.135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.135

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing