Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids

Abstract

The application of organic light-emitting devices to reduce the energy consumption of interior lighting, which now costs more than $230 billion annually1, is attracting interest due to the high efficiency of these devices. Indeed, electrophosphorescent organic light-emitting devices with an internal quantum efficiency ηIQE of 100% (refs 2,3) already approach the efficiency of fluorescent lamps4,5,6. However, because of the high refractive index of organic materials and the optical confinement and internal reflection that results, the light out-coupling efficiency ηout for conventional organic light-emitting devices is limited to 20% (refs 2,7). Here we demonstrate that embedding a low-index grid in the organic layers can enhance the out-coupling of the waveguided light without spectral distortion. When combined with microlenses that out-couple the glass modes, the external quantum efficiency ηEQE and power efficiency of a white organic light-emitting device are improved to 34 ± 2% and 68 ± 4 lm W–1. The resulting ηout is 2.3 ± 0.2 times that of a conventional organic light-emitting device used as a comparison, and simulations indicate that the enhancement can be further increased to 3.4 ± 0.2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the OLED with the embedded low-index grid (LIG) in the organic layers.
Figure 2: Simulations of enhancement in out-coupling efficiency.
Figure 3: Scanning electron microscope (SEM) images of the OLED with a low-index grid (LIG) and of the microlens array.
Figure 4: Performance characteristics of devices 1 to 4.

Similar content being viewed by others

References

  1. Mills, E. The $230 billion Global Lighting Energy Bill. Proceedings of the 5th International Conference on Energy-Efficient Lighting (2002).

  2. Adachi, C., Baldo, M. A., Thompson, M. E. & Forrest, S. R. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J. Appl. Phys. 90, 5048–5051 (2001).

    Article  ADS  Google Scholar 

  3. Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).

    Article  ADS  Google Scholar 

  4. D'Andrade, B. W. & Forrest, S. R. White organic light-emitting devices for solid-state lighting. Adv. Mater. 16, 1585–1595 (2004).

    Article  Google Scholar 

  5. Sun, Y. & Forrest, S. R. High-efficiency white organic light emitting devices with three separate phosphorescent emission layers. Adv. Mater. 16, 1585–1595 (2004).

    Article  Google Scholar 

  6. Williams, E. L., Haavisto, K., Li, J. & Jabbour, G. E. Excimer-based white phosphorescent organic light emitting diodes with nearly 100% internal quantum efficiency. Adv. Mater. 19, 197–202 (2007).

    Article  Google Scholar 

  7. Chutinan, A., Ishihara, K., Asano, T., Fujita, M. & Noda, S. Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods. Org. Elect. 6, 3–9 (2005).

    Article  Google Scholar 

  8. Bulovic, V. et al. Weak microcavity effects in organic light-emitting devices. Phys. Rev. B 58, 3730–3740 (1998).

    Article  ADS  Google Scholar 

  9. Gu, G., Burrows, P. E., Venkatesh, S., Forrest, S. R. & Thompson, M. E. High-external-quantum-efficiency organic light-emitting devices. Opt. Lett. 22, 396–398 (1997).

    Article  ADS  Google Scholar 

  10. Zhou, X. et al. High-efficiency electrophosphorescent organic light-emitting diodes with double light-emitting layers. Appl. Phys. Lett. 81, 4070–4072 (2002).

    Article  ADS  Google Scholar 

  11. Moller, S. & Forrest, S. R. Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. J. Appl. Phys. 91, 3324–3327 (2002).

    Article  ADS  Google Scholar 

  12. Nakamura, T., Tsutsumi, N., Juni, N. & Fujii, H. Thin-film waveguiding mode light extraction in organic electroluminescent device using high refractive index substrate. J. Appl. Phys. 97, 054505 (2005).

    Article  ADS  Google Scholar 

  13. Sun, Y. & Forrest, S. R. Organic light emitting devices with enhanced out-coupling via microlenses fabricated by imprint lithography. J. Appl. Phys. 100, 073106 (2006).

    Article  ADS  Google Scholar 

  14. Nakayama, T., Hiyama, K., Furukawa, K. & Ohtani, H. Development of phosphorescent white OLED with extremely high power efficiency and long lifetime. Society for Information Display Digest 19, 1018–1021 (2007).

    Google Scholar 

  15. Do, Y. R., Kim, Y. C., Song, Y. W. & Lee, Y. H. Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure. J. Appl. Phys. 96, 7629–7636 (2004).

    Article  ADS  Google Scholar 

  16. Feng, J. & Okamoto, T. Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling. Opt. Lett. 30, 2302–2304 (2005).

    Article  ADS  Google Scholar 

  17. Agrawal, M., Sun, Y., Forrest, S. R. & Peumans, P. Enhanced out-coupling from organic light-emitting diodes using aperiodic dielectric mirrors. Appl. Phys. Lett. 90, 241112 (2007).

    Article  ADS  Google Scholar 

  18. Tsutsui, T., Yahiro, M., Yokogawa, H. & Kawano, K. Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer. Adv. Mater. 13, 1149–1152 (2001).

    Article  Google Scholar 

  19. Ziebarth, J. M. & McGehee, M. D. A theoretical and experimental investigation of light extraction from polymer light-emitting diodes. J. Appl. Phys. 97, 064502 (2005).

    Article  ADS  Google Scholar 

  20. Gifford, D. K. & Hall, D. G. Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling. Appl. Phys. Lett. 81, 4315–4317 (2002).

    Article  ADS  Google Scholar 

  21. Wu, S. T. & Yang, D. K. Fundamentals of Liquid Crystal Devices (Wiley, New York, 2006).

    Google Scholar 

  22. Ngaffo, F. F. et al. Deposition of ITO films on SiO2 substrates. Appl. Surf. Sci. 248, 428–432 (2005).

    Article  ADS  Google Scholar 

  23. Baldo, M. A. & Forrest, S. R. Transient analysis of organic electrophosphorescence: I. Transient analysis of triplet energy transfer. Phys. Rev. B 62, 10958–10966 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the US Department of Energy for support through a subcontract from the University of Southern California and Universal Display Corporation for partial financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Forrest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Forrest, S. Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nature Photon 2, 483–487 (2008). https://doi.org/10.1038/nphoton.2008.132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing