Letter | Published:

A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation

Nature Photonics volume 2, pages 496500 (2008) | Download Citation

Subjects

Abstract

The emerging field of nanophotonics1 addresses the critical challenge of manipulating light on scales much smaller than the wavelength. However, very few feasible practical approaches exist at present. Surface plasmon polaritons2,3 are among the most promising candidates for subwavelength optical confinement3,4,5,6,7,8,9,10. However, studies of long-range surface plasmon polaritons have only demonstrated optical confinement comparable to that of conventional dielectric waveguides, because of practical issues including optical losses and stringent fabrication demands3,11,12,13. Here, we propose a new approach that integrates dielectric waveguiding with plasmonics. The hybrid optical waveguide consists of a dielectric nanowire separated from a metal surface by a nanoscale dielectric gap. The coupling between the plasmonic and waveguide modes across the gap enables ‘capacitor-like’ energy storage that allows effective subwavelength transmission in non-metallic regions. In this way, surface plasmon polaritons can travel over large distances (40–150 µm) with strong mode confinement (ranging from λ2/400 to λ2/40). This approach is fully compatible with semiconductor fabrication techniques and could lead to truly nanoscale semiconductor-based plasmonics and photonics.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & A roadmap for nanophotonics. Nature Photonics 1, 303–304 (2007).

  2. 2.

    Electromagnetic Surface Modes (Wiley, New York, 1982).

  3. 3.

    & Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

  4. 4.

    , , , & Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22, 475–477 (1997).

  5. 5.

    & Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. Phys. Rev. E. 50, 4094–4106 (1994).

  6. 6.

    & Nano-optical waveguides breaking through diffraction limit of light, in Optomechatronic Micro/Nano Components, Devices, and Systems, Proc. SPIE, vol. 5604, 158–172 (ed. Katagiri, Y.) (SPIE, Bellingham, WA, 2004).

  7. 7.

    & Channel plasmon-polariton in a triangular groove on a metal surface. Opt. Lett. 29, 1069–1071 (2004).

  8. 8.

    & Gain-assisted slow to superluminal group velocity manipulation in nanowaveguides. Phys. Rev. Lett. 97, 223902 (2006).

  9. 9.

    & Tunneling of electromagnetic energy through subwavelength channels and bends using ɛ-near-zero materials. Phys. Rev. Lett. 97, 157403 (2006).

  10. 10.

    et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003).

  11. 11.

    , , & Channel plasmon-polariton guiding by subwavelength metal grooves. Phys. Rev. Lett. 95, 046802 (2005).

  12. 12.

    et al. Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl. Phys. Lett. 87, 261114 (2005).

  13. 13.

    et al. Dielectric stripes on gold as surface plasmon waveguides. Appl. Phys. Lett. 88, 094104 (2006).

  14. 14.

    et al. Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999).

  15. 15.

    et al. Field enhancement within an optical fibre with a subwavelength air core. Nature Photonics 1, 115–118 (2007).

  16. 16.

    , & Ultrafast photonic crystal nanocavity laser. Nature Phys. 2, 484–488 (2006).

  17. 17.

    , , & Guiding and confining light in void nanostructure. Opt. Lett. 29, 1209–1211 (2004).

  18. 18.

    , & Surface plasmon polariton amplification in planar metal films. IEEE J. Quant. Electron. 43, 1104–1108 (2007).

  19. 19.

    et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

  20. 20.

    et al. Lasing in metallic-coated nanocavities. Nature Photonics 1, 589–594 (2007).

  21. 21.

    Terahertz quantum cascade lasers. Nature Photonics 1, 517–525 (2007).

  22. 22.

    , , & All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004).

  23. 23.

    & Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires. Pure Appl. Chem. 76, 2051–2068 (2004).

  24. 24.

    & Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

  25. 25.

    & Range extension of surface plasmons by dielectric layers. Opt. Lett. 12, 367–369 (1987).

  26. 26.

    Classical Electrodynamics 3rd edn (John Wiley & Sons, New York, 1999).

  27. 27.

    , , & A Hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

  28. 28.

    & Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system. J. Appl. Phys. B 84, 35–41 (2006).

  29. 29.

    & Optical Waveguide Theory (Chapman & Hall, London, New York, 1983).

  30. 30.

    & Figures of merit for 2D surface plasmon waveguides and application to metal stripes. Opt. Express 15, 12174–12182 (2007).

Download references

Acknowledgements

The authors thank G. Bartal for valuable discussions. This work was supported by the Air Force Office of Scientific Research (AFOSR), the Multidisciplinary University Research Initiative (MURI) (FA9550-04-1-0434) and the National Science Foundation (NSF) Nanoscale Science and Engineering Center (DMI-0327077).

Author information

Affiliations

  1. NSF Nanoscale Science and Engineering Center, 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA

    • R. F. Oulton
    • , V. J. Sorger
    • , D. A. Genov
    • , D. F. P. Pile
    •  & X. Zhang

Authors

  1. Search for R. F. Oulton in:

  2. Search for V. J. Sorger in:

  3. Search for D. A. Genov in:

  4. Search for D. F. P. Pile in:

  5. Search for X. Zhang in:

Contributions

R.F.O. conceived of the original concept and carried out the calculations. All authors contributed equally in developing the concept and writing the manuscript.

Corresponding author

Correspondence to X. Zhang.

Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2008.131

Further reading