Letter | Published:

Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace

Nature Photonics volume 2, pages 488491 (2008) | Download Citation

Subjects

Abstract

Efficient and faithful implementation of quantum information tasks, such as quantum computing, quantum communication and quantum metrology1,2,3, requires robust and state-independent decoherence-suppressing measures to protect the quantum information carriers. Here we present an experimental demonstration of a robust distribution scheme in which one photon of an entangled photon pair is successfully encoded into and decoded from a decoherence-free subspace by a state-independent scheme. We achieved a high-fidelity distribution of the entangled state over a fibre communication channel, and also demonstrated that the scheme is robust against fragility of the reference frame. The scheme, thanks to its state-independence, is also applicable to the multipartite case where the photon to be distributed is entangled with many other photons. Such a robust and universal scheme for distributing quantum information in an indeterministic but conclusive manner will constitute an important building block of quantum communication and computing networks.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Quantum information and computation. Nature 404, 247–255 (2000).

  2. 2.

    , & Quantum communication. Nature Photonics 1, 165–171 (2007).

  3. 3.

    & Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

  4. 4.

    & Decoherence-free subspaces and subsystems in Irreversible Quantum Dynamics, Springer Lecture Notes in Physics, Vol. 622 (eds Benatti, F. & Floreanini, R.) 83–120 (Springer, Berlin, 2003).

  5. 5.

    , , & Experimental verification of decoherence-free subspaces. Science 290, 498–501 (2000).

  6. 6.

    et al. A decoherence-free quantum memory using trapped ions. Science 291, 1013–1015 (2001).

  7. 7.

    et al. Experimental realization of noiseless subsystems for quantum information processing. Science 293, 2059–2063 (2001).

  8. 8.

    , & Magnetic resonance realization of decoherence-free quantum computation. Phys. Rev. Lett. 91, 217904 (2003).

  9. 9.

    , , & Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm. Phys. Rev. Lett. 91, 187903 (2003).

  10. 10.

    et al. Decoherence-free quantum information processing with four-photon entangled states. Phys. Rev. Lett. 92, 107901 (2004).

  11. 11.

    , , & Experimental demonstration of entanglement-enhanced classical communication over a quantum channel with correlated noise. Phys. Rev. Lett. 92, 257901 (2004).

  12. 12.

    , , , & ‘Designer’ atoms for quantum metrology. Nature 443, 316–319 (2006).

  13. 13.

    Experimental quantum communication without a shared reference frame. Phys. Rev. Lett. 96, 150504 (2006).

  14. 14.

    Experimental ancilla-assisted qubit transmission against correlated noise using quantum parity checking. New J. Phys. 9, 191 (2007).

  15. 15.

    Experimental demonstration of decoherence-free one-way information transfer. Phys. Rev. Lett. 99, 250503 (2007).

  16. 16.

    , , , & Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91, 087901 (2003).

  17. 17.

    , , & Robust quantum communication using a polarization-entangled photon pair. Phys. Rev. Lett. 93, 220501 (2004).

  18. 18.

    , , , & Faithful qubit distribution assisted by one additional qubit against collective noise. Phys. Rev. Lett. 95, 040503 (2005).

  19. 19.

    , & Probabilistic quantum logic operations using polarizing beam splitters. Phys. Rev. A 64, 062311 (2001).

  20. 20.

    , & Loss-tolerant optical qubits. Phys. Rev. Lett. 95, 100501 (2005).

  21. 21.

    , & A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

  22. 22.

    , , & Demonstrating superior discrimination of locally prepared states using nonlocal measurements. Phys. Rev. Lett. 94, 220406 (2005).

  23. 23.

    , , & Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

  24. 24.

    , , & Measurement of qubits. Phys. Rev. A 64, 052312 (2001).

  25. 25.

    Quantum interference between two single photons emitted by independently trapped atoms. Nature 440, 779–782 (2006).

  26. 26.

    Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).

  27. 27.

    , & Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79, 555–609 (2007).

  28. 28.

    , & High-intensity pulsed source of space–time and polarization double-entangled photon pairs. Phys. Rev. A 62, 011802(R) (2000).

  29. 29.

    , , & Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421, 343–346 (2003).

  30. 30.

    Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998).

Download references

Acknowledgements

This work was partially supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research(C)20540389 and the Ministry of Education, Culture, Sports, Science and Technology-Japan (MEXT) Grant-in-Aid for Young scientists(B) 20740232.

Author information

Affiliations

  1. Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

    • Takashi Yamamoto
    • , Kodai Hayashi
    • , Şahin Kaya Özdemir
    • , Masato Koashi
    •  & Nobuyuki Imoto
  2. CREST Research Team for Photonic Quantum Information, 4-1-8 Honmachi, Kawaguchi, Saitama 331-0012, Japan

    • Takashi Yamamoto
    • , Kodai Hayashi
    • , Şahin Kaya Özdemir
    • , Masato Koashi
    •  & Nobuyuki Imoto
  3. ERATO Nuclear Spin Electronics Project, Aramaki Aza Aoba, Sendai, Miyagi 980-0845, Japan

    • Şahin Kaya Özdemir

Authors

  1. Search for Takashi Yamamoto in:

  2. Search for Kodai Hayashi in:

  3. Search for Şahin Kaya Özdemir in:

  4. Search for Masato Koashi in:

  5. Search for Nobuyuki Imoto in:

Corresponding author

Correspondence to Nobuyuki Imoto.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2008.130

Further reading