Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Resonance-driven random lasing

Abstract

A random laser is a system formed by a random assembly of elastic scatterers dispersed into an optical gain medium1. The multiple light scattering replaces the standard optical cavity of traditional lasers and the interplay between gain and scattering determines the lasing properties. All random lasers studied to date have consisted of irregularly shaped or polydisperse scatterers, with a certain average scattering strength that was constant over the frequency window of the laser2,3,4. In this letter we consider the case where the scattering is resonant. We demonstrate that randomly assembled monodisperse spheres can sustain scattering resonances over the gain frequency window, and that the lasing wavelength can therefore be controlled by means of the diameter and refractive index of the spheres. The system is therefore a random laser with an a priori designed lasing peak within the gain curve.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Static measurements of the photonic glass light transport.
Figure 2: Random lasing action of photonic glasses.
Figure 3: Random lasing action of sphere suspensions.
Figure 4: Mode competition between Mie resonances.

References

  1. 1

    Noginov, M. A. Solid-State Random Lasers (Springer, Berlin, 2005).

    Google Scholar 

  2. 2

    Letokhov, V. S. Generation of light by a scattering medium with negative resonance absorption. Sov. Phys. JETP 26, 835–840 (1968).

    ADS  Google Scholar 

  3. 3

    Lawandy, N. M., Balachandran, R. M., Gomes, A. S. L. & Sauvain, E. Laser action in strongly scattering media. Nature 368, 436–438 (1994).

    ADS  Article  Google Scholar 

  4. 4

    Cao, H., et al. Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films. Appl. Phys. Lett. 73, 3656–3658 (1998).

    ADS  Article  Google Scholar 

  5. 5

    Markushev, V. M., Zolin, V. F. & Briskina, C. M. Powder laser. Zh. Prikl. Spektrosk. 45, 847–850 (1986).

    Google Scholar 

  6. 6

    Bahoura, M., Morris, K. J. & Noginov, M. A. Threshold and slope efficiency of Nd0.5La0.5Al3(BO3)4 ceramic random laser: effect of the pumped spot size. Opt. Commun. 201, 405–411 (2002).

    ADS  Article  Google Scholar 

  7. 7

    Klein, S., Cregut, O., Gindre, D., Boeglin, A. & Dorkenoo, K. D. Random laser action in organic film during the photopolymerization process. Opt. Express 3, 5387–5392 (2005).

    ADS  Article  Google Scholar 

  8. 8

    Polson, R. C. & Vardeny, Z. V. Random lasing in human tissues. Appl. Phys. Lett. 85, 1289–1291 (2004).

    ADS  Article  Google Scholar 

  9. 9

    Wiersma, D. S. & Lagendijk, A. Light diffusion with gain and random lasers. Phys. Rev. E 54, 4256–4265 (1996).

    ADS  Article  Google Scholar 

  10. 10

    Cao, H. et al. Photon statistics of random lasers with resonant feedback. Phys. Rev. Lett. 86, 4524–4527 (2001).

    ADS  Article  Google Scholar 

  11. 11

    Florescu, L. & John, S. Photon statistics and coherence in light emission from a random laser. Phys. Rev. Lett. 93, 013602 (2004).

    ADS  Article  Google Scholar 

  12. 12

    Soukoulis, C. M., Xunya Jiang, Xu, J. Y. & Cao, H. Dynamic response and relaxation oscillations in random lasers. Phys. Rev. B 65, 041103 (2002).

    ADS  Article  Google Scholar 

  13. 13

    van der Molen, K. L., Mosk, A. P. & Lagendijk, A. Relaxation oscillation in long-pulsed random lasers. arXiv:physics/0703045v1 (2007).

  14. 14

    Popov, O., Zilbershtein, A. & Davidov, D. Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength. Appl. Phys. Lett. 89, 191116 (2006).

    ADS  Article  Google Scholar 

  15. 15

    Shkunov, M. N. et al. Tunable gap-state lasing in switchable directions for opal photonic crystals. Adv. Funct. Mater. 12, 21–26 (2002);

    Article  Google Scholar 

  16. 16

    Scharrer, M. et al. Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals. Appl. Phys. Lett. 88, 201103 (2006).

    ADS  Article  Google Scholar 

  17. 17

    Shkunov, M. N. et al. Photonic versus random lasing in opal single crystals. Synth. Met. 116, 485–491 (2001).

    Article  Google Scholar 

  18. 18

    Teh, L. K., Wong, C. C., Yang H. Y., Lau, S. P. & Yu, S. F. Lasing in electrodeposited ZnO inverse opal. Appl. Phys. Lett. 91, 161116 (2007).

    ADS  Article  Google Scholar 

  19. 19

    Mishchenko, M. I., Travis, L. D. & Lacis, A. A. Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002).

    Google Scholar 

  20. 20

    Garcia, P. D., Sapienza, R., Blanco, A. & Lopez, C. Photonic glass: a novel random material for light. Adv. Mater. 19, 2597–2602 (2007).

    Article  Google Scholar 

  21. 21

    Jiang, P., Bertone, J. F., Hwang, K. S. & Colvin, V. L. Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11, 2132–2140 (1999).

    Article  Google Scholar 

  22. 22

    Sapienza, R., et al. Observation of resonant behavior in the energy velocity of diffused light. Phys. Rev. Lett. 99, 233902 (2007).

    ADS  Article  Google Scholar 

  23. 23

    Garcia, N., Genack, A. Z. & Lisyansky, A. A. Measurement of the transport mean free path of diffusing photons. Phys. Rev. B 46, 14475–14479 (1992).

    ADS  Article  Google Scholar 

  24. 24

    Durian, D. J. Influence of boundary reflection and refraction on diffusive photon transport. Phys. Rev. E 50, 857–866 (1994).

    ADS  Article  Google Scholar 

  25. 25

    Siegman, A. E. Lasers (Stanford University, University Science Books, Oxford, 1986).

    Google Scholar 

  26. 26

    van Soest, G. & Lagendijk, A. Beta factor in a random laser. Phys. Rev. E 65, 047601 (2002).

    ADS  Article  Google Scholar 

  27. 27

    van der Molen, K. L., Mosk, A. P. & Lagendijk, A. Intrinsic intensity fluctuations in random lasers. Phys. Rev. A 74, 053808 (2006).

    ADS  Article  Google Scholar 

  28. 28

    Goodwin, J. W., Hearn, J., Ho, C. C. & Ottewill, R. H. Studies on the preparation and characterisation of monodisperse polystyrene laticee. Colloid. Polym. Sci. 252, 464–471 (1974).

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank J.J. Saenz, R. Righini and M. Colocci for useful discussions. The work was financially supported by the European Commission (EC) (LENS) under contract number RII3-CT-2003-506350, by the European Union (EU) through the Network of Excellence IST-2-511616-NOE (PHOREMOST), CICyT NAN2004-08843-C05, MAT2006-09062, the Spanish MEC Consolider-QOIT CSD2006-0019 and the Comunidad de Madrid S-0505/ESP-0200.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Diederik S. Wiersma.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gottardo, S., Sapienza, R., García, P. et al. Resonance-driven random lasing. Nature Photon 2, 429–432 (2008). https://doi.org/10.1038/nphoton.2008.102

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing