Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An avalanche‐photodiode-based photon-number-resolving detector


Avalanche photodiodes are widely used as practical detectors of single photons1. Although conventional devices respond to one or more photons, they cannot resolve the number of photons in the incident pulse or in a short time interval. However, photon-number-resolving detectors are urgently needed for applications in quantum computing2,3,4, communications5 and interferometry6, as well as for extending the applicability of quantum detection generally. Here we show that, contrary to current belief3,4, avalanche photodiodes are capable of detecting photon number, using a technique to measure very weak avalanches at the early stage of their development. Under such conditions the output signal from the avalanche photodiode is proportional to the number of photons in the incident pulse. As a compact, mass-manufactured device, operating without cryogens and at telecom wavelengths, it offers a practical solution for photon number detection.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Comparison of conventional gated Geiger mode with the new self-differencing mode of APD operation.
Figure 2: Distribution of the peak output signal generated by the self-differencing APD.
Figure 3: Comparison of output signals recorded for self-differencing and conventional modes.
Figure 4: Noise factor analysis.


  1. 1

    Pellegrini, S. et al. Design and performance of an InGaAs-InP single-photon avalanche diode detector. IEEE J. Quant. Electron. 42, 397–403 (2006).

    ADS  Article  Google Scholar 

  2. 2

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    ADS  Article  Google Scholar 

  3. 3

    Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    ADS  Article  Google Scholar 

  4. 4

    O'Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007).

    ADS  Article  Google Scholar 

  5. 5

    Żukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. K. ‘Event-ready-detectors’ Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993).

    ADS  Article  Google Scholar 

  6. 6

    Edamatsu, K., Shimizu, R. & Itoh, T. Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion. Phys. Rev. Lett. 89, 213601 (2002).

    ADS  Article  Google Scholar 

  7. 7

    Shields, A. J. Semiconductor quantum light sources. Nature Photon. 1, 215–223 (2007).

    ADS  Article  Google Scholar 

  8. 8

    Achilles, D., Silberhorn, C. & Walmsley, I. A. Direct, loss-tolerant characterization of nonclassical photon statistics. Phys. Rev. Lett. 97, 043602 (2006).

    ADS  Article  Google Scholar 

  9. 9

    Liu, M. G. et al. Low dark count rate and high single-photon detection efficiency avalanche photodiode in Geiger-mode operation. IEEE Photon. Technol. Lett. 19, 378–380 (2007)

    ADS  Article  Google Scholar 

  10. 10

    Sidhu, R. et al. GaAsSb resonant-cavity enhanced avalanche photodiode operating at 1.06 µm. Electron. Lett. 40, 1296–1297 (2004).

    Article  Google Scholar 

  11. 11

    Kim, J. S., Takeuchi, S., Yamamoto, Y. & Hogue, H. H. Multiphoton detection using visible light photon counter. Appl. Phys. Lett. 74, 902–904 (1999).

    ADS  Article  Google Scholar 

  12. 12

    Miller, A. J., Nam, S. W., Martinis, J. M. & Sergienko, A. V. Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination. Appl. Phys. Lett. 83, 791–793 (2003).

    ADS  Article  Google Scholar 

  13. 13

    Fujiwara, M. & Sasaki, M. Multiphoton discrimination at telecom wavelength with charge integration photon detector. Appl. Phys. Lett. 86, 111119 (2005).

    ADS  Article  Google Scholar 

  14. 14

    Kardynał, B. E. et al. Photon number resolving detector based on a quantum dot field effect transistor. Appl. Phys. Lett. 90, 181114 (2007).

    ADS  Article  Google Scholar 

  15. 15

    Gansen, E. J. et al. Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor. Nature Photon. 1, 585–588 (2007).

    ADS  Article  Google Scholar 

  16. 16

    Fitch, M. J., Jacobs, B. C., Pittman, T. B. & Franson, J. D. Photon-number resolution using time-multiplexed single-photon detectors. Phys. Rev. A 68, 043814 (2003).

    ADS  Article  Google Scholar 

  17. 17

    Jiang, L. A., Dauler, E. A. & Chang, J. T. Photon-number-resolving detector with 10 bits of resolution. Phys. Rev. A 75, 062325 (2007).

    ADS  Article  Google Scholar 

  18. 18

    Splinelli, A. & Lacaita, A. L. Physics and numerical simulation of single photon avalanche diodes. IEEE Trans. Electron. Dev. 44, 1931–1943 (1997).

    ADS  Article  Google Scholar 

  19. 19

    Yuan, Z. L., Kardynal, B. E., Sharpe, A. W. & Shields, A. J. High speed single photon detection in the near infrared. Appl. Phys. Lett. 91, 041114 (2007).

    ADS  Article  Google Scholar 

  20. 20

    Mclntyre, R. J. A new look at impact ionization—Part I: A theory of gain, noise, breakdown probability, and frequency response. IEEE Trans. Electron. Dev. 46, 1623–1631 (1999).

    ADS  Article  Google Scholar 

  21. 21

    PerkinElmer ‘Avalanche photodiode. A user guide.’ Available at APP_APDUsersGuide.pdf

Download references

Author information



Corresponding author

Correspondence to A. J. Shields.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kardynał, B., Yuan, Z. & Shields, A. An avalanche‐photodiode-based photon-number-resolving detector. Nature Photon 2, 425–428 (2008).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing