Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces


Optical forces can produce significant mechanical effects in micro- and nanophotonic systems. Here we demonstrate a novel optomechanical system using a movable, micrometre-scale waveguide evanescently coupled to a high-Q optical microresonator. Micrometre-scale displacements of the waveguide are observed for milliwatt-level optical input powers. Measurement of the spatial variation of the force on the waveguide indicates that it arises from a cavity-enhanced optical dipole force resulting from the stored optical field of the resonator. This force is used to realize an all-optical tunable filter operating with submilliwatt control power. A theoretical model of the system shows that the maximum achievable force is independent of the intrinsic Q of the optical resonator and scales inversely with the cavity mode volume, suggesting that such forces may become even more effective as devices approach the nanoscale.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic diagrams of two different optomechanical cavity systems.
Figure 2: Waveguide displacement.
Figure 3: Physical structure and fields of the waveguide–resonator system.
Figure 4: Characterization of optical coupling and measurement of the CEODF.
Figure 5: Optically tunable filter demonstration.


  1. Povinelli, M. L. et al. Evanescent-wave bonding between optical waveguides. Opt. Lett. 30, 3042–3044 (2005).

  2. Povinelli, M. L. et al. High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators. Opt. Express 13, 8287–8295 (2005).

    ADS  Google Scholar 

  3. Ng, J., Chan, C. T., Sheng, P. & Lin, Z. Strong optical force induced by morphology-dependent resonances. Opt. Lett. 30, 1956–1958 (2005).

    ADS  Article  Google Scholar 

  4. Notomi, M. & Mitsugi, S. Wavelength conversion via dynamic refractive index tuning of a cavity. Phys. Rev. A 73, 051803(R) (2006).

  5. Notomi, M., Taniyama, H., Mitsugi, S. & Kuramochi, E. Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs. Phys. Rev. Lett. 97, 023903 (2006).

    ADS  Article  Google Scholar 

  6. Cohadon, P. F., Heidmann, A. & Pinard, M. Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174–3177 (1999).

    ADS  Article  Google Scholar 

  7. Höhberger Metzger, C. & Karrai, K. Cavity cooling of a microlever. Nature 432, 1002–1005 (2004).

    ADS  Article  Google Scholar 

  8. Gigan, S. et al. Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006).

    ADS  Article  Google Scholar 

  9. Kleckner, D. & Bouwmeester, D. Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75–78 (2006).

    ADS  Article  Google Scholar 

  10. Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M. & Heidmann, A. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006).

    ADS  Article  Google Scholar 

  11. Schliesser, A., Del'Haye, P., Nooshi, N., Vahala, K. & Kippenberg, T. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006).

    ADS  Article  Google Scholar 

  12. Favero, I. et al. Optical cooling of a micromirror of wavelength size. Appl. Phys. Lett. 90, 104101 (2007).

    ADS  Article  Google Scholar 

  13. Braginsky, V. B. & Manukin, A. B. Measurements of Weak Forces in Physics Experiments (The Univ. of Chicago Press, Chicago, Illinois, 1977).

  14. Dorsel, A., McCullen, J., Meystre, P., Vignes, E. & Walther, H. Optical bistability and mirror confinement induced by radiation pressure. Phys. Rev. Lett. 51, 1550–1553 (1983).

    ADS  Article  Google Scholar 

  15. Meystre, P., Wright, E. M., McCullen, J. D. & Vignes, E. Theory of radiation-pressure-driven interferometers. J. Opt. Soc. Am. B 2, 1830–1840 (1985).

    ADS  Article  Google Scholar 

  16. Pai, A., Dhurandhar, S., Hello, P. & Vinet, J.-Y. Radiation pressure induced instabilities in laser interferometric detectors of gravitational waves. Eur. Phys. J. D 8, 333–346 (1999).

    ADS  Article  Google Scholar 

  17. Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. J. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).

    ADS  Article  Google Scholar 

  18. Marquardt, F., Harris, J. G. E. & Girvin, S. M. Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. Phys. Rev. Lett. 96, 103901 (2006).

    ADS  Article  Google Scholar 

  19. Gordon, J. P. & Ashkin, A. Motion of atoms in a radiation trap. Phys. Rev. A 21, 1606–1617 (1980).

    ADS  Article  Google Scholar 

  20. Metcalf, H. J. & van der Straten, P. Laser Cooling and Trapping. Graduate Texts in Contemporary Physics (Springer, New York, 1999).

    Book  Google Scholar 

  21. Barclay, P. E., Srinivasan, K., Painter, O., Lev, B. & Mabuchi, H. Integration of fiber-coupled high-Q SiNx microdisks with atom chips. Appl. Phys. Lett. 89, 131108 (2006).

    ADS  Article  Google Scholar 

  22. Michael, C. P., Borselli, M., Johnson, T. J., Chrystal, C. & Painter, O. An optical fiber-taper probe for wafer-scale microphotonic device characterization. Opt. Express 15, 4745–4752 (2007).

    ADS  Article  Google Scholar 

  23. Carmon, T., Yang, L. & Vahala, K. J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

    ADS  Article  Google Scholar 

  24. Barclay, P. E., Srinivasan, K. & Painter, O. Nonlinear response of silicon photonic crystal microcavities excited via an integrated waveguide and fiber taper. Opt. Express 13, 801–820 (2005).

    ADS  Article  Google Scholar 

  25. Spillane, S. M., Kippenberg, T. J., Painter, O. J. & Vahala, K. J. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003).

    ADS  Article  Google Scholar 

  26. Haus, H. A. Waves and Fields in Optoelectronics, 1st edn (Prentice-Hall, Englewood Cliffs, New Jersey, 1984).

    Google Scholar 

  27. Manolatou, C. et al. Coupling of modes analysis of resonant channel add-drop filters. IEEE J. Quant. Electron. 35, 1322–1331 (1999).

    ADS  Article  Google Scholar 

  28. Ashkin, A. History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J. Quant. Electron. 6, 841–856 (2000).

    Article  Google Scholar 

  29. Fatih, M. & Fan, S. Stopping light all optically. Phys. Rev. Lett. 92, 083901 (2004).

    ADS  Article  Google Scholar 

  30. Xu, Q. et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett. 96, 123901 (2006).

    ADS  Article  Google Scholar 

  31. Lee, M.-C. M. & Wu, M. C. MEMS-actuated microdisk resonators with variable power coupling ratios. IEEE Photon. Technol. Lett. 17, 1034–1036 (2005).

    ADS  Article  Google Scholar 

  32. Stowe, T. D. et al. Attonewton force detection using ultrathin silicon cantilevers. Appl. Phys. Lett. 71, 288–290 (1997).

    ADS  Article  Google Scholar 

  33. Yang, J., Ono, T. & Esashi, M. Investigating surface stress: Surface loss in ultrathin single-crystal silicon cantilevers. J. Vac. Sci. Technol. B 19, 551–556 (2001).

    Article  Google Scholar 

  34. Huang, X. M. H., Zorman, C. A., Mehregany, M. & Roukes, M. L. Nanodevice motion at microwave frequencies. Nature 421, 496 (2003).

    ADS  Article  Google Scholar 

  35. Carmon, T. & Vahala, K. J. Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1 GHz frequency. Phys. Rev. Lett. 98, 123901 (2007).

    ADS  Article  Google Scholar 

  36. Painter, O., Vučcković, J. & Scherer, A. Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab. J. Opt. Soc. Am. B 16, 275–285 (1999).

    ADS  Article  Google Scholar 

  37. Barclay, P. E., Srinivasan, K., Borselli, M. & Painter, O. Efficient input and output optical fiber coupling to a photonic crystal waveguide. Opt. Lett. 29, 697–699 (2004).

    ADS  Article  Google Scholar 

  38. Borselli, M., Srinivasan, K., Barclay, P. E. & Painter, O. Rayleigh scattering, mode coupling, and optical loss in silicon microdisks. Appl. Phys. Lett. 85, 3693–3695 (2004).

    ADS  Article  Google Scholar 

  39. Borselli, M., Johnson, T. J. & Painter, O. Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment. Opt. Express 13, 1515–1530 (2005).

    ADS  Article  Google Scholar 

Download references


The authors sincerely thank T. Johnson, P. Barclay and K. Srinivasan for many fruitful discussions and helpful feedback.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Oskar Painter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eichenfield, M., Michael, C., Perahia, R. et al. Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces. Nature Photon 1, 416–422 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing