Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

All-optical modulation by plasmonic excitation of CdSe quantum dots

Abstract

Photonics is a promising candidate technology for information processing, communication and data storage1,2,3. Essential building blocks, such as logic elements and modulators, have been demonstrated4,5,6. However, because of weak nonlinear light–matter interactions, these components typically require high power densities and large interaction volumes, limiting their application in dense chip-based integration. A solution may be found in surface plasmon polaritons (SPPs), guided electromagnetic waves that propagate with high field confinement along a metal–dielectric interface. We demonstrate an all-optical modulator in which efficient interaction between two light beams at different wavelengths is achieved by converting them into co-propagating SPPs interacting by means of a thin layer of CdSe quantum dots (QDs). The high SPP field confinement and high QD-absorption cross-section enable optical modulation at low power densities (102 W cm−2) in micrometre-scale planar devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two-colour all-optical plasmonic modulator.
Figure 2: Plasmonic interferometry.
Figure 3: All-optical modulation.
Figure 4: Power dependence of the pump transmission.

Similar content being viewed by others

References

  1. ITRS, International Technology Roadmap for Semiconductors, Emerging Research Devices (2005).

  2. Sawchuck, A. A. Digital optical computing. Proc. IEEE 72, 758–779 (1984).

    Article  Google Scholar 

  3. Huang, A. Architectural considerations involved in the design of an optical digital-computer. Proc. IEEE 72, 780–786 (1984).

    Article  Google Scholar 

  4. Jensen, S. M. The non-linear coherent coupler. IEEE J. Quant. Electron. 18, 1580–1583 (1982).

    Article  ADS  Google Scholar 

  5. Friberg, S. R. et al. Ultrafast all-optical switching in a dual-core fiber nonlinear coupler. Appl. Phys. Lett. 51, 1135–1137 (1987).

    Article  ADS  Google Scholar 

  6. Jewell, J. L. et al. 3-pJ, 82-MHz optical logic gates in a room-temperature GaAs-AlGaAs multiple-quantum-well etalon. Appl. Phys. Lett. 46, 918–920 (1985).

    Article  ADS  Google Scholar 

  7. Garcìa-Vidal, F. J., Lezec, H. J., Ebbesen, T. W. & Martin-Moreno, L. Multiple paths to enhance optical transmission through a single subwavelength slit. Phys. Rev. Lett. 90, 213901 (2003).

    Article  ADS  Google Scholar 

  8. Schouten, H. F. et al. Plasmon-assisted two-slit transmission: Young's experiment revisited. Phys. Rev. Lett. 94, 053901 (2005).

    Article  ADS  Google Scholar 

  9. Lezec, H. J. & Thio, T. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. Opt. Express 12, 3629–3651 (2004).

    Article  ADS  Google Scholar 

  10. Gay, G. et al. The optical response of nanostructured surfaces and the composite diffracted evanescent wave model. Nature Phys. 2, 262–267 (2006).

    Article  ADS  Google Scholar 

  11. Gay, G. et al. Surface quality and surface waves on subwavelength-structured silver films. Phys. Rev. E 75, 016612 (2007).

    Article  ADS  Google Scholar 

  12. Murray, C. B., Noms, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  Google Scholar 

  13. Raether, H. Surface plasmons on smooth and rough surfaces and on gratings. Springer Tracts in Mod. Phys. 111, 1–133 (1988).

    Article  Google Scholar 

  14. Lalanne, P., Hugonin, J. P. & Rodier, J. C. Theory of surface plasmon generation at nanoslit apertures. Phys. Rev. Lett. 95, 263902 (2005).

    Article  ADS  Google Scholar 

  15. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    Article  ADS  Google Scholar 

  16. Leatherdale, C. A., Woo, W.-K., Mikulec, F. V. & Bawendi, M. G. On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B 106, 7619–7621 (2002).

    Article  Google Scholar 

  17. Nirmal, M. et al. Observation of the dark exciton in CdSe quantum dots. Phys. Rev. Lett. 75, 3728–3731 (1995).

    Article  ADS  Google Scholar 

  18. Lereu, A. L., Passian, A., Goudonnet, J. P., Thundat, T. & Ferrell, T. L. Optical modulation processes in thin films based on thermal effects of surface plasmons. Appl. Phys. Lett. 86, 154101 (2005).

    Article  ADS  Google Scholar 

  19. Passian, A. et al. Surface plasmon assisted thermal coupling of multiple photon energies, Thin Solid Films 497, 315–320 (2006).

    Article  ADS  Google Scholar 

  20. Passian, A. et al. Modulation of multiple photon energies by use of surface plasmons. Opt. Lett. 30, 41–43 (2005).

    Article  ADS  Google Scholar 

  21. Kretschmann, E. Determination of optical constants of metals by excitation of surface plasmons. Z. Phys. 241, 313 (1971).

    Article  ADS  Google Scholar 

  22. Klimov, V. I., Schwarz, C. J., McBranch, D. W., Leatherdale, C. A. & Bawendi, M. G. Ultrafast dynamics of inter- and intraband transitions in semiconductor nanocrystals: Implications for quantum-dot lasers. Phys. Rev. B 60, R2177–R2180 (1999).

    Article  ADS  Google Scholar 

  23. Klimov, V. I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J. Phys. Chem. B 104, 6112–6123 (2000).

    Article  Google Scholar 

  24. Soares, B. F., MacDonald, K. F., Fedotov, V. A. & Zheludev, N. I. Light-induced switching between structural forms with different optical properties in a single gallium nanoparticulate. Nano Lett. 5, 2104–2107 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from AFOSR MURI No. FA9550-04-1-0434.

Discussion and technical support from R. J. Walters, L. A. Sweatlock, T. Carmon, S. J. Kim and E. Marcora are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry A. Atwater.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pacifici, D., Lezec, H. & Atwater, H. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photon 1, 402–406 (2007). https://doi.org/10.1038/nphoton.2007.95

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.95

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing