Review Article | Published:

Microwave photonics combines two worlds

Nature Photonics volume 1, pages 319330 (2007) | Download Citation

Subjects

Abstract

Microwave photonics, which brings together the worlds of radiofrequency engineering and optoelectronics, has attracted great interest from both the research community and the commercial sector over the past 30 years and is set to have a bright future. The technology makes it possible to have functions in microwave systems that are complex or even not directly possible in the radiofrequency domain and also creates new opportunities for telecommunication networks. Here we introduce the technology to the photonics community and summarize recent research and important applications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & Guest editorial: Microwave photonics. J. Lightwave Technol. 21, 2959–2960 (2003).

  2. 2.

    Microwave photonics. IEEE Trans. Microwave Theory Tech. 50, 877–887 (2002).

  3. 3.

    in Proc. IEEE Int. Topical Meeting Microwave Photon. Oqunquit, Maine, USA 16–19 (2004).

  4. 4.

    & Microwave circuit models of semiconductor injection lasers. IEEE Trans. Microwave Theory Tech. 83, 289–294 (1983).

  5. 5.

    et al. Control of differential gain, nonlinear gain, and damping factor for high-speed application of GaAs-based MQW lasers. IEEE J. Quant. Electron. 29, 1648–1659 (1993).

  6. 6.

    , , , & 30-GHz bandwidth 1.55-μm strained-compensated InGaAlAs–InGaAsP MQW laser. IEEE Photon. Technol. Lett. 9, 25–27 (1997).

  7. 7.

    , & Millimeter wave narrowband optical fiber links using external cavity semiconductor lasers. J. Lightwave. Technol. 1, 127–136 (1994).

  8. 8.

    , & Techniques for multi-channel data transmission using a multi-section laser in millimeter-wave fiber-radio systems. IEEE Trans. Microwave Theory. Tech. 47, 1351–1357 (1999).

  9. 9.

    et al. Enhanced direct-modulated bandwidth of 37 GHz by a multi-section laser with a coupled-cavity-injection-grating design. Electron. Lett. 39, 1592–1593 (2003).

  10. 10.

    , & Experimental demonstration of modulation bandwidth enhancment in distributed feedback lasers with external light injection. Electron. Lett. 34, 2031–2032 (1998).

  11. 11.

    , & in Proc. IEEE Opt. Fiber Commun. Conf. Anaheim, California, USA OThG2 (2006).

  12. 12.

    et al. 50-GHz optically injection-locked 1.55-μm VCSELs. IEEE Photon. Technol. Lett. 18, 367–369 (2006).

  13. 13.

    & 50 GHz velocity-matched broad wavelength LiNbO3 modulator with multimode active section. Electron. Lett. 28, 1197–1199 (1992).

  14. 14.

    , & Millimeter-wave Ti: LiNbO3 optical modulators. J. Lightwave Technol. 16, 615–619 (1998).

  15. 15.

    in Proc. 8th IEEE LEOS Meeting. Sydney, Austrailia 118–119 (1995).

  16. 16.

    , , & GaAs/AlGaAs traveling wave electro-optic modulator with electrical bandwidth greater than 40 GHz. Electron. Lett. 32, 1095–1096 (1996).

  17. 17.

    et al. Demonstration of 110 GHz electro-optic polymer modulators. Appl. Phys. Lett. 70, 3335–3337 (1997).

  18. 18.

    et al. Ultra high-speed multiple quantum well electroabsorption optical modulators with integrated waveguides. J. Lightwave Technol. 14, 2026–2034 (1996).

  19. 19.

    , , , & in Proc. IEEE Opt. Fiber Commun. Conf. San Jose, California, USA 287–288 (1998).

  20. 20.

    , , & 25 GHz polarization insensitive electroabsorption modulators with travelling wave electrodes. IEEE Photon. Technol. Lett. 11, 191–193 (1999).

  21. 21.

    et al. Wide bandwidth of over 50 GHz travelling-wave electrode electroabsorption modulator integrated DFB lasers. Electron. Lett. 37, 299–300 (2001).

  22. 22.

    et al. 110-GHz GaInAs/InP double heterostructure p-i-n photodetectors. J. Lightwave Technol. 13, 1490–1499 (1995).

  23. 23.

    , , , & Waveguide integrated 1.55-μm photodetector with 45 GHz bandwidth. Electron. Lett. 32, 2143–2145 (1996).

  24. 24.

    et al. Travelling-wave photodetectors with 172-GHz bandwidth and 76-GHz bandwidth-efficiency product. IEEE Photon. Technol. Lett. 7, 412–414 (1995).

  25. 25.

    et al. Uni-traveling-carrier photodiodes. Tech. Dig. Ultrafast Electron. Optoelectron. 83–87 (1997).

  26. 26.

    , , & High power uni-travelling-carrier photoiodes. Proc. Int. IEEE Topical Meeting Microwave Photon. Melbourne, Austrailia 75–78 (1999).

  27. 27.

    , , , & Photonic millimetre- and sub-millimetre-wave generation using J-band rectangular-waveguide-output uni-travelling-carrier photodiode module. Electron. Lett. 42, 3033–3034 (2006).

  28. 28.

    & Optical control of microwave semiconductor devices. IEEE Trans. Microwave Theory Tech. 38, 577–585 (1990).

  29. 29.

    et al. in Microwave Photonics 157–184 (CRC–Taylor and Francis, Boca Raton, Florida, USA, 2007).

  30. 30.

    , , , & AM video on fiber in CATV systems: Need and implementation. IEEE J. Sel. Areas Commun. 8, 1229–1239 (1990).

  31. 31.

    & in Proc. IEEE Vehic. Technol. Conf. Ottawa, Canada 1395–1399 (1998).

  32. 32.

    & in Proc. IEEE Int. Topical Meeting Microwave Photon. Budapest, Hungary 123–128, (2003).

  33. 33.

    , , , & Directly-modulated photonic devices for microwave applications. Proc. IEEE MTT-S Intl Microwave Symp. Long Beach, California, USA (2005).

  34. 34.

    , , & Radio over multimode fibre transmission for wireless LAN using VCSELs. Electron. Lett. 39, 1143–1144 (2003).

  35. 35.

    -Å. et al. WCDMA radio-over-fiber transmission experiment using singlemode VCSEL and multimode fibre. Electron. Lett. 42, 372–374 (2006).

  36. 36.

    , & Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems. Electron. Lett. 33, 74–75 (1997).

  37. 37.

    , , & Dispersion-induced power penalties in millimeter-wave signal transmission using multi-section DBR semiconductor lasers. IEEE Trans. Microwave Theory Tech. 49, 288–296 (2001).

  38. 38.

    , & Experimental reduction of chromatic dispersion effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fibre gratings. Electron. Lett. 33, 1170–1171 (1997).

  39. 39.

    Fading-free transport of 60 GHz optical DSB signal in non-dispersion shifted fiber using chirped fiber grating. Proc. IEEE Int. Topical Meeting Microwave Photon. Princeton, New Jersey, USA 223–226 (1998).

  40. 40.

    et al. RACE R2005: Microwave optical duplex antenna link. IEE Proc. J 140, 385–391 (1993).

  41. 41.

    & Millimetre-wave (39 GHz) fibre-wireless transmission of broadband multichannel compressed digital video. Electron. Lett. 32, 474–476 (1996).

  42. 42.

    , & 120 Mbps QPSK radio-fiber transmission over 100 km of standard fiber at 60 GHz using a master/slave injection locked DFB laser source. Electron. Lett. 32, 1895–1897 (1996).

  43. 43.

    , , & Full-duplex broadband millimetre-wave optical transport system for fiber wireless access. Electron. Lett. 33, 1159–1160 (1997).

  44. 44.

    et al. in Proc. IEEE MTT-S Int. Microwave Symp. Denver, Colorado 225–228 (1997).

  45. 45.

    , , & A mobile broad-band communication system based on mode-locked lasers. IEEE Trans. Microwave Theory Tech. 45, 1424–1430 (1997).

  46. 46.

    , , , & Full-duplex 60 GHz fiber optic transmission. Electron. Lett. 35, 1653–1655 (1999).

  47. 47.

    , , , & in Proc.IEEE MTT-S Int. Microwave Symp. Anaheim, California, USA 1201–1204 (1999).

  48. 48.

    & in Proc. IEICE Int. Topical Workshop Contemp. Photon. Technol. 17–20 (2000).

  49. 49.

    , & in Proc. IEEE MTT-S Int. Microwave Symp. Anaheim, California, USA 1213–1216 (1999).

  50. 50.

    et al. 60-GHz bidirectional radio-on-fiber links based on InP/InGaAs HPT optoelectronic mixers. IEEE Photon. Technol. Lett. 17, 2721–2723 (2005).

  51. 51.

    , , & A DWDM mm-wave fiber-radio system by optical frequency interleaving for high spectral efficiency. Proc. IEEE Int. Topical. Meeting Microwave Photon. Awaji, Japan 85–88 (2002).

  52. 52.

    , , , & On the merging of millimeter-wave fiber-radio backbone with 25 GHz WDM ring networks. J. Lightwave Technol. 21, 2203–2210 (2003).

  53. 53.

    , , & Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source. J. Lightwave Technol. 24, 404–410 (2006).

  54. 54.

    , & Simultaneous baseband and RF optical modulation scheme for feeding wires and wireline heterogeneous access network. IEEE Trans. Microwave Theory Tech. 49, 2018–2024 (2001).

  55. 55.

    , & Simultaneous three-band modulation and fiber-optic transmission of 2.5-Gb/s baseband, microwave-, and 60-GHz-band signals on a single wavelength. J. Lightwave Technol. 21, 3194–3202 (2003).

  56. 56.

    , , , & Optical interface for IMD reduction in fiber-radio systems with simultaneous baseband transmission for heterogeneous access networks. Proc. IEEE Opt. Fib. Commun. Conf. Anaheim, California, USA (2007).

  57. 57.

    , & Passive pico-cell – A new concept in wireless network infrastructure. Electron. Lett. 33, 404–406 (1997).

  58. 58.

    et al. An approach to single optical component antenna base stations for broad-band millimeter-wave fiber-radio access systems. IEEE Trans. Microwave Theory Tech. 48, 2588–2595 (2000).

  59. 59.

    , & in Proc. IEEE Int. Topical Meeting Microwave Photon. Melbourne, Austrailia 123–126 (1999).

  60. 60.

    , , & Wavelength re-use in the WDM optical interface of a millimeter-wave fiber wireless antenna base-station. IEEE Trans. Microwave Theory Tech. 49, 2006–2012 (2001).

  61. 61.

    , & in Proc. IEEE LEOS Ann. Meet. Montreal, Canada 522–523 (2006).

  62. 62.

    Optical processor for phased array antenna beamformation. Proc. SPIE 477, 75–81 (1984).

  63. 63.

    , , & Two-dimensional optical architecture for time-delay beam forming in a phased array antenna. Opt. Lett. 6, 255–257 (1991).

  64. 64.

    et al. The first demonstration of an optically steered microwave phased array antenna using true-time-delay. IEEE J. Lightwave Technol. 9, 1124–1131 (1991).

  65. 65.

    & Optical beam forming techniques for phased array antennas. IEE Proc. H 139, 526–534 (1992).

  66. 66.

    , & Carrier-to-noise ratio and sidelobe level in a two-laser model optically controlled array antenna using Fourier optics. IEEE Trans. Ant. Propagat. 40, 1459–1465 (1992).

  67. 67.

    Liquid crystal-based optical control of phased-array antenna. J. Lightwave Technol. 10, 1974–1984 (1992).

  68. 68.

    et al. Fiber-optic prism true time-delay antenna feed. IEEE Photon. Technol. Lett. 5, 1347–1369 (1993).

  69. 69.

    , & Fibre grating time delay element for phased array antennas. Electron. Lett. 31, 1485–1486 (1995).

  70. 70.

    & True time-delay fiber-optic control of an ultrawideband array transmitter/receiver with multibeam capability. IEEE Trans. Microwave Theory Tech. 43, 2387–2394 (1995).

  71. 71.

    , , & Optical processor for multibeam microwave array antennas. Electron. Lett. 32, 822–824 (1996).

  72. 72.

    & A novel multiwavelength optically controlled phased array antenna with programmable dispersion matrix. IEEE Photon. Technol. Lett. 8, 812–814 (1996).

  73. 73.

    , , & Optical beam forming and steering architectures for satcom phased-array antennas. Dig. IEEE Ant. Propagat. Symp. 2, 1508–1511 (1996).

  74. 74.

    , , , & Photonic beamformer for phased array antennas using fibre grating prism. IEEE Photon. Technol. Lett. 9, 241–243 (1997).

  75. 75.

    , , & Time-steered array with a chirped grating beamformer. Electron. Lett. 33, 652–653 (1997).

  76. 76.

    , , & Beam formation by using optical signal processing techniques. Dig. IEEE Ant. Propagat. Symp. 2, 739–742 (1997).

  77. 77.

    , & in Dig. IEEE Microwave Theory Tech. Symp. Baltimore, Maryland, USA 1379–1382 (1998).

  78. 78.

    , , , & Photonic integrated beamformer for a phased array antenna. Proc. Europ. Conf. Opt. Commun. Madrid, Spain 637–638 (1998).

  79. 79.

    et al. in Proc. IEEE Opt. Fiber Commun. Conf. Atlanta, Georgia, USA 732–734 (2003).

  80. 80.

    et al. Simplified WDM optical beamforming network for large antenna arrays. IEEE Photon. Technol. Lett. 18, 1200–1202 (2006).

  81. 81.

    , , & Optical beamforming network based on fiber-optical delay lines and spatial light modulators for large antenna arrays. IEEE Photon. Technol. Lett. 18, 2590–2592 (2006).

  82. 82.

    in Proc. Aust. Acad. Sci. Applicat. Radio Sci. Workshop. Beechworth, Austrailia 41–46 (2000).

  83. 83.

    & in Proc. IEEE Int. Topical Meeting Microwave Photon. Awaji, Japan 9–12 (2002).

  84. 84.

    Photonic signal processing of microwave signals. IEEE Trans. Microwave Theory Tech. 54, 832–846 (2006).

  85. 85.

    , , & Discrete-time optical processing of microwave signals. J. Lightwave Technol. 23, 702–723 (2005).

  86. 86.

    Architectural considerations of fiber-radio millimeter-wave wireless access systems. J. Fib. Integ. Opt. 19, 167–186 (2000).

  87. 87.

    , , , & Tunable microwave photonic filter for noise and interference suppression in UMTS base stations. Electron. Lett. 40, 997–999 (2004).

  88. 88.

    , & An integrated interference supression scheme with adaptative equalizer for digital satellite communication systems. IEICE Trans. Commun. E79-B, 191–196 (1996).

  89. 89.

    Introduction to Radar Systems (McGraw-Hill, New York, 1980).

  90. 90.

    & Photonic Aspects of Modern Radar (Artech House, Boston, 1994).

  91. 91.

    et al. Optical fiber delay-line signal processing. IEEE Trans. Microwave. Theory Tech. 33, 193–204 (1985).

  92. 92.

    & Tunable transversal filter based on chirped gratings. Electron. Lett. 31, 2205–2207 (1995).

  93. 93.

    & Tunable microwave fiber-optic bandpass filters. IEEE Photon. Technol. Lett. 11, 874–876 (1999).

  94. 94.

    & A novel high-Q optical microwave processor using hybrid delay line filters. IEEE Trans. Microwave Theory Tech. 47, 1304–1308 (1999).

  95. 95.

    & High-Q optical microwave filter. Electron. Lett. 35, 2125–2126 (1999).

  96. 96.

    , & High-performance microwave transversal filter using fiber Bragg grating arrays. IEEE Photon. Technol. Lett. 12, 1183–1185 (2000).

  97. 97.

    , & Optical fiber recirculating delay line incorporating a fiber grating array. IEEE Microwave Wireless Compon. Lett. 11, 217–219 (2001).

  98. 98.

    , & New and flexible fiber-optic delay line filters using chirped Bragg gratings and laser arrays. IEEE Trans. Microwave Theory Tech. 47, 1321–1327 (1999).

  99. 99.

    , & Compact microwave photonic transversal filter with 40 dB sidelobe suppression. IEEE Photon. Technol. Lett. 17, 663–665 (2005).

  100. 100.

    , & Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters. IEEE Photon. Technol. Lett. 13, 726–728 (2001).

  101. 101.

    et al. Automatic tunable and reconfigurable fiberoptic microwave filters based on a broadband optical source sliced by uniform fiber Bragg gratings. Opt. Express 10, 1291–1298 (2002).

  102. 102.

    , , & High-quality low-cost online-reconfigurable microwave photonic transversal filter with positive and negative coefficients. IEEE Photon. Technol. Lett. 17, 2730–2732 (2005).

  103. 103.

    , , & Experimental demonstration of fibre-optic delay line filters with negative coefficients. Electron. Lett. 31, 1095–1096 (1995).

  104. 104.

    , , & All-optical RF filter using amplitude inversion in a SOA. IEEE Trans. Microwave Theory Tech. 45, 1473–1477 (1997).

  105. 105.

    , , , & Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator. Opt. Lett. 28, 1415–1417 (2003).

  106. 106.

    , , & Demonstration of incoherent microwave photonic filters with all-optical complex coefficients. IEEE Photon. Technol. Lett. 18, 1774–1776 (2006).

  107. 107.

    & Photonic notch filter without optical coherence limitations. J. Lightwave Technol. 22, 1811–1817 (2004).

  108. 108.

    , , , & Highly selective microwave photonic filters based on an active optical recirculating cavity and tuned modulator hybrid structure. Electron. Lett. 41, 1133–1135 (2005).

  109. 109.

    & Coherent photonic processing of microwave signals using spatial light modulators: Programmable amplitude filters. J. Lightwave Technol. 24, 2523–2529 (2006).

  110. 110.

    Analog-to-digital converter survey and analysis. IEEE J. Sel. Areas Commun. 17, 539–550 (1999).

  111. 111.

    , , , & 100 Gbit/s optical waveform measurement with 0.6 ps resolution optical sampling subpicosecond supercontinuum pulses. Electron. Lett. 30, 1152–1154 (1994).

  112. 112.

    & Optical folding-flash analog-to-digital converter with analog encoding. Opt. Lett. 20, 1901–1903 (1995).

  113. 113.

    , & High-performance photonic analogue-digital converter. Electron. Lett. 33, 2096–2097 (1997).

  114. 114.

    et al. 505-MS/s photonic analog-to-digital converter. Dig. Conf. Lasers Electro-opt. Baltimore, Maryland, USA 63–64 (2001).

  115. 115.

    & Toward a 100-Gsample/s photonic A-D converter. IEEE Photon. Technol. Lett. 13, 236–238 (2001).

  116. 116.

    , & Photonic time stretch and its application to analog-to-digital conversion. IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).

  117. 117.

    & Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations. J. Lightwave Technol. 21, 3085–3103 (2003).

  118. 118.

    & Time-bandwidth product of the photonic time-stretched analog-to-digital converter. IEEE Trans. Microwave Theory Tech. 51, 1886–1892 (2003).

  119. 119.

    , , & Single sideband modulation in photonic time-stretch analogue-to-digital conversion. Electron. Lett. 37, 67–68 (2001).

  120. 120.

    , & Ultrawide-band photonic time stretch A/D converter employing phase diversity. IEEE Trans. Microwave Theory Tech. 53, 1404–1408 (2005).

  121. 121.

    , Photonic analog-to-digital converters, Opt. Express 15, 1955–1982 (2007).

  122. 122.

    , & Femtosecond real-time single-shot digitizer, Proc. Meeting Am. Phys. Soc. Baltimore, Maryland, USA (2006).

  123. 123.

    Workshop on ultrafast analog-to-digital (A/D) converters., Proc. IEEE MTT-S Int. Microwave Symp. (2004).

  124. 124.

    , & in Proc. IEEE LEOS Ann. Meeting. La Jolla, California, USA 253 (2001).

  125. 125.

    , , , & Toward a photonic arbitrary waveform generator using modelocked external cavity semiconductor laser. IEEE Photon. Technol. Lett. 14, 1608–1610 (2002).

  126. 126.

    , & Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper. Opt. Lett. 27, 1345–1347 (2002).

  127. 127.

    , & Photonically assisted generation of continuous arbitrary millimetre electromagnetic waveforms. Electron. Lett. 39, 309–310 (2003).

  128. 128.

    , , & Photonically assisted generation of arbitrary millimeter-wave and microwave electromagnetic waveforms via direct space-to-time optical pulse shaping. IEEE J. Lightwave Technol. 21, 3020–3028 (2003).

  129. 129.

    , & Photonic microwave arbitrary waveform generation using a virtually-imaged phased-array (VIPA) direct space-to-time pulse shapers. IEEE Photon. Technol. Lett. 16, 1936–1938 (2004).

  130. 130.

    , & Adaptive RF-Photonic arbitrary waveform generator. IEEE Photon. Technol. Lett. 15, 581–583 (2003).

  131. 131.

    , & Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication. IEEE Microwave Wireless Compon. Lett. 15, 226–228 (2005).

  132. 132.

    , & Arbitrary waveform generator based on all-incoherent pulse shaping. IEEE Photon. Technol. Lett. 18, 2626–2628 (2006).

  133. 133.

    & Generation of complex microwave and millimeter-wave pulses using dispersion and Kerr effect in optical fiber systems. J. Lightwave Technol. 21, 1179–1187 (2003).

  134. 134.

    & Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse-shaping techniques. IEEE Trans. Microwave Theory Tech. 54, 1681–1685 (2006).

  135. 135.

    , , , & Predistortion technique for RF-photonic generation of high-power ultrawideband arbitrary waveforms. J. Lightwave Technol. 24, 2752–2759 (2006).

Download references

Author information

Affiliations

  1. Universidad Politécnica de Valencia, Institute of Telecommunications and Multimedia Applications, Edificio 8G, Ciudad Politecnica de la Innovacion, Valencia, Valencia 46023, Spain

    • José Capmany
  2. Pharad LLC, 797 Cromwell Park Drive, Suite 5, Glen Burnie, Maryland 21061, USA

    • Dalma Novak

Authors

  1. Search for José Capmany in:

  2. Search for Dalma Novak in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to José Capmany.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nphoton.2007.89

Further reading