Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microwave photonics combines two worlds

Abstract

Microwave photonics, which brings together the worlds of radiofrequency engineering and optoelectronics, has attracted great interest from both the research community and the commercial sector over the past 30 years and is set to have a bright future. The technology makes it possible to have functions in microwave systems that are complex or even not directly possible in the radiofrequency domain and also creates new opportunities for telecommunication networks. Here we introduce the technology to the photonics community and summarize recent research and important applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic highlighting the fundamental concept of an analog microwave photonic link.
Figure 2: A schematic showing an example of a commercially available HFR system: Andrew Corporation's ION (intelligent optical network) family of optical distributed antenna systems.
Figure 3: Schematic highlighting three possible schemes for radio signal transport between the central office and remote access point in HFR systems.
Figure 4: Schematic showing a fibre-optic prism with a single laser to feed numerous phased-array elements68.
Figure 5: Schematics of RF signal processing.
Figure 6: A reconfigurable and tunable microwave photonic filter using a laser source array and a dispersive linearly chirped FBG device.
Figure 7: Block diagram of the photonic stretch processor.
Figure 8: The photonic AWG comprising the spectral shaping of a supercontinuum source followed by a wavelength to time mapping130,135.

Similar content being viewed by others

References

  1. Seeds, A., Lee, C. H., Funk, E. & Nagamura, M. Guest editorial: Microwave photonics. J. Lightwave Technol. 21, 2959–2960 (2003).

    Article  ADS  Google Scholar 

  2. Seeds, A. Microwave photonics. IEEE Trans. Microwave Theory Tech. 50, 877–887 (2002).

    Article  ADS  Google Scholar 

  3. Seeds, A. J. in Proc. IEEE Int. Topical Meeting Microwave Photon. Oqunquit, Maine, USA 16–19 (2004).

    Google Scholar 

  4. Tucker, R. S. & Pope, D. J. Microwave circuit models of semiconductor injection lasers. IEEE Trans. Microwave Theory Tech. 83, 289–294 (1983).

    Article  ADS  Google Scholar 

  5. Ralston, J. D. et al. Control of differential gain, nonlinear gain, and damping factor for high-speed application of GaAs-based MQW lasers. IEEE J. Quant. Electron. 29, 1648–1659 (1993).

    Article  ADS  Google Scholar 

  6. Matsui, Y., Murai, H., Arahira, S., Kutsuzawa, S. & Ogawa, Y. 30-GHz bandwidth 1.55-μm strained-compensated InGaAlAs–InGaAsP MQW laser. IEEE Photon. Technol. Lett. 9, 25–27 (1997).

    Article  ADS  Google Scholar 

  7. Nagarajan, R., Levy, S. & Bowers, J. E. Millimeter wave narrowband optical fiber links using external cavity semiconductor lasers. J. Lightwave. Technol. 1, 127–136 (1994).

    Article  ADS  Google Scholar 

  8. Lim, C., Nirmalathas, A. & Novak, D. Techniques for multi-channel data transmission using a multi-section laser in millimeter-wave fiber-radio systems. IEEE Trans. Microwave Theory. Tech. 47, 1351–1357 (1999).

    Article  ADS  Google Scholar 

  9. Bach, L. et al. Enhanced direct-modulated bandwidth of 37 GHz by a multi-section laser with a coupled-cavity-injection-grating design. Electron. Lett. 39, 1592–1593 (2003).

    Article  Google Scholar 

  10. Meng, X. J., Chau, T. & Wu, M. C. Experimental demonstration of modulation bandwidth enhancment in distributed feedback lasers with external light injection. Electron. Lett. 34, 2031–2032 (1998).

    Article  Google Scholar 

  11. Lau, E. K., Sung, H. K. & Wu, M. C. in Proc. IEEE Opt. Fiber Commun. Conf. Anaheim, California, USA OThG2 (2006).

    Google Scholar 

  12. Chrostowski, L. et al. 50-GHz optically injection-locked 1.55-μm VCSELs. IEEE Photon. Technol. Lett. 18, 367–369 (2006).

    Article  ADS  Google Scholar 

  13. Dolfi, D. W. & Ranganath, T. R. 50 GHz velocity-matched broad wavelength LiNbO3 modulator with multimode active section. Electron. Lett. 28, 1197–1199 (1992).

    Article  ADS  Google Scholar 

  14. Noguchi, K., Mitomi, O. & Miyazawa, H. Millimeter-wave Ti: LiNbO3 optical modulators. J. Lightwave Technol. 16, 615–619 (1998).

    Article  ADS  Google Scholar 

  15. Walker, R. G. in Proc. 8th IEEE LEOS Meeting. Sydney, Austrailia 118–119 (1995).

    Google Scholar 

  16. Spickermann, R., Sakamoto, S. R., Peters, M. G. & Dagli, N. GaAs/AlGaAs traveling wave electro-optic modulator with electrical bandwidth greater than 40 GHz. Electron. Lett. 32, 1095–1096 (1996).

    Article  Google Scholar 

  17. Chen, D. et al. Demonstration of 110 GHz electro-optic polymer modulators. Appl. Phys. Lett. 70, 3335–3337 (1997).

    Article  ADS  Google Scholar 

  18. Ido, T. et al. Ultra high-speed multiple quantum well electroabsorption optical modulators with integrated waveguides. J. Lightwave Technol. 14, 2026–2034 (1996).

    Article  ADS  Google Scholar 

  19. Mineo, N., Yamada, K., Nakamura, K., Sakai, S. & Ushikobo, T. in Proc. IEEE Opt. Fiber Commun. Conf. San Jose, California, USA 287–288 (1998).

    Google Scholar 

  20. Zhang, S. Z., Chiu, Y. J., Abraham, P. & Bowers, J. E. 25 GHz polarization insensitive electroabsorption modulators with travelling wave electrodes. IEEE Photon. Technol. Lett. 11, 191–193 (1999).

    Article  ADS  Google Scholar 

  21. Akage, Y. et al. Wide bandwidth of over 50 GHz travelling-wave electrode electroabsorption modulator integrated DFB lasers. Electron. Lett. 37, 299–300 (2001).

    Article  Google Scholar 

  22. Wey, Y. G. et al. 110-GHz GaInAs/InP double heterostructure p-i-n photodetectors. J. Lightwave Technol. 13, 1490–1499 (1995).

    Article  ADS  Google Scholar 

  23. Ümbach, A., Trommer, D., Mekonnen, G. G., Ebert, W. & Unterbörsch, G. Waveguide integrated 1.55-μm photodetector with 45 GHz bandwidth. Electron. Lett. 32, 2143–2145 (1996).

    Article  Google Scholar 

  24. Giboney, K. S. et al. Travelling-wave photodetectors with 172-GHz bandwidth and 76-GHz bandwidth-efficiency product. IEEE Photon. Technol. Lett. 7, 412–414 (1995).

    Article  ADS  Google Scholar 

  25. Ishibashi, T. et al. Uni-traveling-carrier photodiodes. Tech. Dig. Ultrafast Electron. Optoelectron. 83–87 (1997).

  26. Ishibashi, T., Fushimi, H., Ito, H. & Furuta, T. High power uni-travelling-carrier photoiodes. Proc. Int. IEEE Topical Meeting Microwave Photon. Melbourne, Austrailia 75–78 (1999).

  27. Ito, H., Furuta, T., Muramoto, Y., Ito, T. & Ishibashi, T. Photonic millimetre- and sub-millimetre-wave generation using J-band rectangular-waveguide-output uni-travelling-carrier photodiode module. Electron. Lett. 42, 3033–3034 (2006).

    Article  Google Scholar 

  28. Seeds, A. J. & de Salles, A. A. A. Optical control of microwave semiconductor devices. IEEE Trans. Microwave Theory Tech. 38, 577–585 (1990).

    Article  ADS  Google Scholar 

  29. Novak, D. et al. in Microwave Photonics 157–184 (CRC–Taylor and Francis, Boca Raton, Florida, USA, 2007).

    Google Scholar 

  30. Chiddix, J. A., Laor, H., Pangrac, D. M., Williamson, L. D. & Wolfe, R. W. AM video on fiber in CATV systems: Need and implementation. IEEE J. Sel. Areas Commun. 8, 1229–1239 (1990).

    Article  Google Scholar 

  31. Rivas, I. & Lopes, L. B. in Proc. IEEE Vehic. Technol. Conf. Ottawa, Canada 1395–1399 (1998).

    Google Scholar 

  32. Casini, A. & Faccin, P. in Proc. IEEE Int. Topical Meeting Microwave Photon. Budapest, Hungary 123–128, (2003).

    Google Scholar 

  33. Qian, X., Hartmann, P., Ingham, J. D., Penty, R. V. & White, I. H. Directly-modulated photonic devices for microwave applications. Proc. IEEE MTT-S Intl Microwave Symp. Long Beach, California, USA (2005).

  34. Chia, M. Y. W., Luo, B., Lee, M. L. & Hao, E. J. Z. Radio over multimode fibre transmission for wireless LAN using VCSELs. Electron. Lett. 39, 1143–1144 (2003).

    Article  Google Scholar 

  35. Persson, K. -Å. et al. WCDMA radio-over-fiber transmission experiment using singlemode VCSEL and multimode fibre. Electron. Lett. 42, 372–374 (2006).

    Article  Google Scholar 

  36. Smith, G. H., Novak, D. & Ahmed, Z. Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems. Electron. Lett. 33, 74–75 (1997).

    Article  Google Scholar 

  37. Lim, C., Novak, D., Nirmalathas, A. & Smith, G. H. Dispersion-induced power penalties in millimeter-wave signal transmission using multi-section DBR semiconductor lasers. IEEE Trans. Microwave Theory Tech. 49, 288–296 (2001).

    Article  ADS  Google Scholar 

  38. Marti, J., Fuster, J. M. & Laming, R. I. Experimental reduction of chromatic dispersion effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fibre gratings. Electron. Lett. 33, 1170–1171 (1997).

    Article  Google Scholar 

  39. Kitayama, K. Fading-free transport of 60 GHz optical DSB signal in non-dispersion shifted fiber using chirped fiber grating. Proc. IEEE Int. Topical Meeting Microwave Photon. Princeton, New Jersey, USA 223–226 (1998).

  40. O'Reilly, J. J. et al. RACE R2005: Microwave optical duplex antenna link. IEE Proc. J 140, 385–391 (1993).

    Google Scholar 

  41. Park, J. & Lau, K. Y. Millimetre-wave (39 GHz) fibre-wireless transmission of broadband multichannel compressed digital video. Electron. Lett. 32, 474–476 (1996).

    Article  Google Scholar 

  42. Noël, L., Marcenac, D. & Wake, D. 120 Mbps QPSK radio-fiber transmission over 100 km of standard fiber at 60 GHz using a master/slave injection locked DFB laser source. Electron. Lett. 32, 1895–1897 (1996).

    Article  Google Scholar 

  43. Smith, G. H., Novak, D., Lim, C. & Wu, K. Full-duplex broadband millimetre-wave optical transport system for fiber wireless access. Electron. Lett. 33, 1159–1160 (1997).

    Article  Google Scholar 

  44. Braun, R. P. et al. in Proc. IEEE MTT-S Int. Microwave Symp. Denver, Colorado 225–228 (1997).

    Google Scholar 

  45. Von Helmolt, C. H., Krüger, U., Krüger, K. & Groβkopf, G. A mobile broad-band communication system based on mode-locked lasers. IEEE Trans. Microwave Theory Tech. 45, 1424–1430 (1997).

    Article  ADS  Google Scholar 

  46. Stöhr, A., Kuri, T., Kitayama, K., Heinzelmann, R. & Jäger, D. Full-duplex 60 GHz fiber optic transmission. Electron. Lett. 35, 1653–1655 (1999).

    Article  Google Scholar 

  47. Lim, C., Nirmalathas, A., Novak, D., Waterhouse, R. & Ghorbani, K. in Proc.IEEE MTT-S Int. Microwave Symp. Anaheim, California, USA 1201–1204 (1999).

    Google Scholar 

  48. Haisch, H. & Pfeiffer, T. in Proc. IEICE Int. Topical Workshop Contemp. Photon. Technol. 17–20 (2000).

    Google Scholar 

  49. Ogawa, H., Tsuji, H. & Hirakawa, M. in Proc. IEEE MTT-S Int. Microwave Symp. Anaheim, California, USA 1213–1216 (1999).

    Google Scholar 

  50. Choi, C. S. et al. 60-GHz bidirectional radio-on-fiber links based on InP/InGaAs HPT optoelectronic mixers. IEEE Photon. Technol. Lett. 17, 2721–2723 (2005).

    Article  ADS  Google Scholar 

  51. Toda, H., Yamashita, T., Kitayama, K. & Kuri, T. A DWDM mm-wave fiber-radio system by optical frequency interleaving for high spectral efficiency. Proc. IEEE Int. Topical. Meeting Microwave Photon. Awaji, Japan 85–88 (2002).

  52. Lim, C., Nirmalathas, A., Attygalle, M., Novak, D. & Waterhouse, R. On the merging of millimeter-wave fiber-radio backbone with 25 GHz WDM ring networks. J. Lightwave Technol. 21, 2203–2210 (2003).

    Article  ADS  Google Scholar 

  53. Nakasyotani, T., Toda, H., Kuri, T. & Kitayama, K. Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source. J. Lightwave Technol. 24, 404–410 (2006).

    Article  ADS  Google Scholar 

  54. Martinez, A., Polo, V. & Marti, J. Simultaneous baseband and RF optical modulation scheme for feeding wires and wireline heterogeneous access network. IEEE Trans. Microwave Theory Tech. 49, 2018–2024 (2001).

    Article  ADS  Google Scholar 

  55. Ikeda, K., Kuri, T. & Kitayama, K. Simultaneous three-band modulation and fiber-optic transmission of 2.5-Gb/s baseband, microwave-, and 60-GHz-band signals on a single wavelength. J. Lightwave Technol. 21, 3194–3202 (2003).

    Article  ADS  Google Scholar 

  56. Lim, C., Lee, K. L., Nirmalathas, A., Novak, D. & Waterhouse, R. Optical interface for IMD reduction in fiber-radio systems with simultaneous baseband transmission for heterogeneous access networks. Proc. IEEE Opt. Fib. Commun. Conf. Anaheim, California, USA (2007).

  57. Wake, D., Johansson, D. & Moodie, D. G. Passive pico-cell – A new concept in wireless network infrastructure. Electron. Lett. 33, 404–406 (1997).

    Article  Google Scholar 

  58. Kitayama, K. et al. An approach to single optical component antenna base stations for broad-band millimeter-wave fiber-radio access systems. IEEE Trans. Microwave Theory Tech. 48, 2588–2595 (2000).

    Article  ADS  Google Scholar 

  59. Kuri, T., Kitayama, K. & Takahashi, Y. in Proc. IEEE Int. Topical Meeting Microwave Photon. Melbourne, Austrailia 123–126 (1999).

    Google Scholar 

  60. Nirmalathas, A., Novak, D., Lim, C. & Waterhouse, R. B. Wavelength re-use in the WDM optical interface of a millimeter-wave fiber wireless antenna base-station. IEEE Trans. Microwave Theory Tech. 49, 2006–2012 (2001).

    Article  ADS  Google Scholar 

  61. Ong, L. C., Yee, M. L. & Luo, B. in Proc. IEEE LEOS Ann. Meet. Montreal, Canada 522–523 (2006).

    Google Scholar 

  62. Koepf, G. A. Optical processor for phased array antenna beamformation. Proc. SPIE 477, 75–81 (1984).

    Article  ADS  Google Scholar 

  63. Dolfi, D., Michel-Gabriel, F., Bann, S. & Huignard, J. P. Two-dimensional optical architecture for time-delay beam forming in a phased array antenna. Opt. Lett. 6, 255–257 (1991).

    Article  ADS  Google Scholar 

  64. Ng, W. et al. The first demonstration of an optically steered microwave phased array antenna using true-time-delay. IEEE J. Lightwave Technol. 9, 1124–1131 (1991).

    Article  ADS  Google Scholar 

  65. Benjamin, R. & Seeds, A. J. Optical beam forming techniques for phased array antennas. IEE Proc. H 139, 526–534 (1992).

    Google Scholar 

  66. Konishi, Y., Chujo, W. & Fujise, M. Carrier-to-noise ratio and sidelobe level in a two-laser model optically controlled array antenna using Fourier optics. IEEE Trans. Ant. Propagat. 40, 1459–1465 (1992).

    Article  ADS  Google Scholar 

  67. Riza, N. Liquid crystal-based optical control of phased-array antenna. J. Lightwave Technol. 10, 1974–1984 (1992).

    Article  ADS  Google Scholar 

  68. Esman, R. D. et al. Fiber-optic prism true time-delay antenna feed. IEEE Photon. Technol. Lett. 5, 1347–1369 (1993).

    Article  ADS  Google Scholar 

  69. Molony, A., Edge, C. & Bennion, I. Fibre grating time delay element for phased array antennas. Electron. Lett. 31, 1485–1486 (1995).

    Article  Google Scholar 

  70. Frankel, M. Y. & Esman, R. D. True time-delay fiber-optic control of an ultrawideband array transmitter/receiver with multibeam capability. IEEE Trans. Microwave Theory Tech. 43, 2387–2394 (1995).

    Article  ADS  Google Scholar 

  71. Ji, Y., Inagaki, K., Miura, R. & Karasawa, Y. Optical processor for multibeam microwave array antennas. Electron. Lett. 32, 822–824 (1996).

    Article  Google Scholar 

  72. Tong, D. T. K. & Wu, M. C. A novel multiwavelength optically controlled phased array antenna with programmable dispersion matrix. IEEE Photon. Technol. Lett. 8, 812–814 (1996).

    Article  ADS  Google Scholar 

  73. Paul, D. K., Razdan, R., Markey, B. J. & Takats, P. Optical beam forming and steering architectures for satcom phased-array antennas. Dig. IEEE Ant. Propagat. Symp. 2, 1508–1511 (1996).

    Google Scholar 

  74. Zmuda, H., Soref, R., Payson, P., Johns, S. & Toughlian, E. N. Photonic beamformer for phased array antennas using fibre grating prism. IEEE Photon. Technol. Lett. 9, 241–243 (1997).

    Article  ADS  Google Scholar 

  75. Román, J. E., Frankel, M. Y., Matthews, P. J. & Esman, R. D. Time-steered array with a chirped grating beamformer. Electron. Lett. 33, 652–653 (1997).

    Article  Google Scholar 

  76. Ji, Y., Inagaki, K., Shibata, O. & Karasawa, Y. Beam formation by using optical signal processing techniques. Dig. IEEE Ant. Propagat. Symp. 2, 739–742 (1997).

    Google Scholar 

  77. Corral, J. L., Martí, J. & Fuster, J. M. in Dig. IEEE Microwave Theory Tech. Symp. Baltimore, Maryland, USA 1379–1382 (1998).

    Google Scholar 

  78. Stulemeijer, J., Maat, D. H. P., Moerman, I., Van Vliet, F. E. & Smit, M. K. Photonic integrated beamformer for a phased array antenna. Proc. Europ. Conf. Opt. Commun. Madrid, Spain 637–638 (1998).

  79. Kuhlow, B. et al. in Proc. IEEE Opt. Fiber Commun. Conf. Atlanta, Georgia, USA 732–734 (2003).

    Google Scholar 

  80. Vidal, B. et al. Simplified WDM optical beamforming network for large antenna arrays. IEEE Photon. Technol. Lett. 18, 1200–1202 (2006).

    Article  ADS  Google Scholar 

  81. Vidal, B., Mengual, T., Ibáñez-López, C. & Martí, J. Optical beamforming network based on fiber-optical delay lines and spatial light modulators for large antenna arrays. IEEE Photon. Technol. Lett. 18, 2590–2592 (2006).

    Article  ADS  Google Scholar 

  82. Hall, P. in Proc. Aust. Acad. Sci. Applicat. Radio Sci. Workshop. Beechworth, Austrailia 41–46 (2000).

    Google Scholar 

  83. Payne, J. P. & Shillue, W. P. in Proc. IEEE Int. Topical Meeting Microwave Photon. Awaji, Japan 9–12 (2002).

    Google Scholar 

  84. Minasian, R. A. Photonic signal processing of microwave signals. IEEE Trans. Microwave Theory Tech. 54, 832–846 (2006).

    Article  ADS  Google Scholar 

  85. Capmany, J., Ortega, B., Pastor, D. & Sales, S. Discrete-time optical processing of microwave signals. J. Lightwave Technol. 23, 702–723 (2005).

    Article  ADS  Google Scholar 

  86. Kitayama, K. Architectural considerations of fiber-radio millimeter-wave wireless access systems. J. Fib. Integ. Opt. 19, 167–186 (2000).

    Article  MathSciNet  Google Scholar 

  87. Pastor, D., Ortega, B., Capmany, J., Fonjillaz, P.-Y. & Popov, M. Tunable microwave photonic filter for noise and interference suppression in UMTS base stations. Electron. Lett. 40, 997–999 (2004).

    Article  Google Scholar 

  88. Sugiyama, T., Suzuki, M. & Kubota, S. An integrated interference supression scheme with adaptative equalizer for digital satellite communication systems. IEICE Trans. Commun. E79-B, 191–196 (1996).

    Google Scholar 

  89. Skolnik, M. I. Introduction to Radar Systems (McGraw-Hill, New York, 1980).

    Google Scholar 

  90. Zmuda H. & Toughlian, E. N. Photonic Aspects of Modern Radar (Artech House, Boston, 1994).

    Google Scholar 

  91. Jackson, K. et al. Optical fiber delay-line signal processing. IEEE Trans. Microwave. Theory Tech. 33, 193–204 (1985).

    Article  ADS  Google Scholar 

  92. Hunter, D. B. & Minasian, R. A. Tunable transversal filter based on chirped gratings. Electron. Lett. 31, 2205–2207 (1995).

    Article  Google Scholar 

  93. Hunter, D. B. & Minasian, R. A. Tunable microwave fiber-optic bandpass filters. IEEE Photon. Technol. Lett. 11, 874–876 (1999).

    Article  ADS  Google Scholar 

  94. You, N. & Minasian, R. A. A novel high-Q optical microwave processor using hybrid delay line filters. IEEE Trans. Microwave Theory Tech. 47, 1304–1308 (1999).

    Article  ADS  Google Scholar 

  95. You, N. & Minasian, R. A. High-Q optical microwave filter. Electron. Lett. 35, 2125–2126 (1999).

    Article  Google Scholar 

  96. Yu, G., Zhang, W. & Williams, J. A. R. High-performance microwave transversal filter using fiber Bragg grating arrays. IEEE Photon. Technol. Lett. 12, 1183–1185 (2000).

    Article  ADS  Google Scholar 

  97. Zhang, W., Williams, J. A. R. & Bennion, I. Optical fiber recirculating delay line incorporating a fiber grating array. IEEE Microwave Wireless Compon. Lett. 11, 217–219 (2001).

    Article  Google Scholar 

  98. Capmany, J., Pastor, D. & Ortega, B. New and flexible fiber-optic delay line filters using chirped Bragg gratings and laser arrays. IEEE Trans. Microwave Theory Tech. 47, 1321–1327 (1999).

    Article  ADS  Google Scholar 

  99. Popov, M., Fonjallaz, P. Y. & Gunnarson, O. Compact microwave photonic transversal filter with 40 dB sidelobe suppression. IEEE Photon. Technol. Lett. 17, 663–665 (2005).

    Article  ADS  Google Scholar 

  100. Pastor, D., Capmany, J. & Ortega, B. Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters. IEEE Photon. Technol. Lett. 13, 726–728 (2001).

    Article  ADS  Google Scholar 

  101. Mora, J. et al. Automatic tunable and reconfigurable fiberoptic microwave filters based on a broadband optical source sliced by uniform fiber Bragg gratings. Opt. Express 10, 1291–1298 (2002).

    Article  ADS  Google Scholar 

  102. Capmany, J., Mora, J., Ortega, B. & Pastor, D. High-quality low-cost online-reconfigurable microwave photonic transversal filter with positive and negative coefficients. IEEE Photon. Technol. Lett. 17, 2730–2732 (2005).

    Article  ADS  Google Scholar 

  103. Sales, S., Capmany, J., Martí, J. & Pastor, D. Experimental demonstration of fibre-optic delay line filters with negative coefficients. Electron. Lett. 31, 1095–1096 (1995).

    Article  Google Scholar 

  104. Coppinger, F., Yegnanarayanan, S., Trinh, P. D. & Jalali, B. All-optical RF filter using amplitude inversion in a SOA. IEEE Trans. Microwave Theory Tech. 45, 1473–1477 (1997).

    Article  ADS  Google Scholar 

  105. Capmany, J., Pastor, D., Martinez, A., Ortega, B. & Sales, S. Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator. Opt. Lett. 28, 1415–1417 (2003).

    Article  ADS  Google Scholar 

  106. Loayssa, A., Capmany, J., Sagues, M. & Mora, J. Demonstration of incoherent microwave photonic filters with all-optical complex coefficients. IEEE Photon. Technol. Lett. 18, 1774–1776 (2006).

    Article  ADS  Google Scholar 

  107. Chan, E. H. W. & Minasian, R. A. Photonic notch filter without optical coherence limitations. J. Lightwave Technol. 22, 1811–1817 (2004).

    Article  ADS  Google Scholar 

  108. Ortega, B., Mora, J., Capmany, J., Pastor, D. & Garcia-Olcina, R. Highly selective microwave photonic filters based on an active optical recirculating cavity and tuned modulator hybrid structure. Electron. Lett. 41, 1133–1135 (2005).

    Article  Google Scholar 

  109. Xiao, S. & Weiner, A. M. Coherent photonic processing of microwave signals using spatial light modulators: Programmable amplitude filters. J. Lightwave Technol. 24, 2523–2529 (2006).

    Article  ADS  Google Scholar 

  110. Walden, R. H. Analog-to-digital converter survey and analysis. IEEE J. Sel. Areas Commun. 17, 539–550 (1999).

    Article  Google Scholar 

  111. Takara, H., Kawanishi, S., Morioka, T., Mori, K. & Saruwatari, M. 100 Gbit/s optical waveform measurement with 0.6 ps resolution optical sampling subpicosecond supercontinuum pulses. Electron. Lett. 30, 1152–1154 (1994).

    Article  Google Scholar 

  112. Jalali, B. & Xie, Y. M. Optical folding-flash analog-to-digital converter with analog encoding. Opt. Lett. 20, 1901–1903 (1995).

    Article  ADS  Google Scholar 

  113. Frankel, M. Y., Kang, J. U. & Esman, R. D. High-performance photonic analogue-digital converter. Electron. Lett. 33, 2096–2097 (1997).

    Article  Google Scholar 

  114. Juodawlkis, P. W. et al. 505-MS/s photonic analog-to-digital converter. Dig. Conf. Lasers Electro-opt. Baltimore, Maryland, USA 63–64 (2001).

  115. Clark, T. R. & Dennis, M. L. Toward a 100-Gsample/s photonic A-D converter. IEEE Photon. Technol. Lett. 13, 236–238 (2001).

    Article  ADS  Google Scholar 

  116. Coppinger, F., Bhushan, A. S. & Jalali, B. Photonic time stretch and its application to analog-to-digital conversion. IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).

    Article  Google Scholar 

  117. Han, Y. & Jalali, B. Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations. J. Lightwave Technol. 21, 3085–3103 (2003).

    Article  ADS  Google Scholar 

  118. Han, Y. & Jalali, B. Time-bandwidth product of the photonic time-stretched analog-to-digital converter. IEEE Trans. Microwave Theory Tech. 51, 1886–1892 (2003).

    Article  ADS  Google Scholar 

  119. Fuster, J. M., Novak, D., Nirmalathas, A. & Marti, J. Single sideband modulation in photonic time-stretch analogue-to-digital conversion. Electron. Lett. 37, 67–68 (2001).

    Article  Google Scholar 

  120. Han, Y., Boyraz, O. & Jalali, B. Ultrawide-band photonic time stretch A/D converter employing phase diversity. IEEE Trans. Microwave Theory Tech. 53, 1404–1408 (2005).

    Article  ADS  Google Scholar 

  121. Valley, C., Photonic analog-to-digital converters, Opt. Express 15, 1955–1982 (2007).

    Article  ADS  Google Scholar 

  122. Chou, J., Boyraz, O. & Jalali, B. Femtosecond real-time single-shot digitizer, Proc. Meeting Am. Phys. Soc. Baltimore, Maryland, USA (2006).

  123. Workshop on ultrafast analog-to-digital (A/D) converters., Proc. IEEE MTT-S Int. Microwave Symp. (2004).

  124. Jalali, B., Kelvar, P. & Saxena, V. in Proc. IEEE LEOS Ann. Meeting. La Jolla, California, USA 253 (2001).

  125. Yilmaz, T., DePriest, C. M., Turpin, T., Abeles, J. H. & Delfyett, P. J. Toward a photonic arbitrary waveform generator using modelocked external cavity semiconductor laser. IEEE Photon. Technol. Lett. 14, 1608–1610 (2002).

    Article  ADS  Google Scholar 

  126. McKinney, J. D., Leaird, D. E. & Weiner, A. M. Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper. Opt. Lett. 27, 1345–1347 (2002).

    Article  ADS  Google Scholar 

  127. McKinney, J. D., Seo, D. S. & Weiner, A. M. Photonically assisted generation of continuous arbitrary millimetre electromagnetic waveforms. Electron. Lett. 39, 309–310 (2003).

    Article  Google Scholar 

  128. McKinney, J. D., Seo, D., Leaird, D. E. & Weiner, A. M. Photonically assisted generation of arbitrary millimeter-wave and microwave electromagnetic waveforms via direct space-to-time optical pulse shaping. IEEE J. Lightwave Technol. 21, 3020–3028 (2003).

    Article  ADS  Google Scholar 

  129. Xiao, S., McKinney, J. D. & Weiner, A. M. Photonic microwave arbitrary waveform generation using a virtually-imaged phased-array (VIPA) direct space-to-time pulse shapers. IEEE Photon. Technol. Lett. 16, 1936–1938 (2004).

    Article  ADS  Google Scholar 

  130. Chou, J., Han, Y. & Jalali, B. Adaptive RF-Photonic arbitrary waveform generator. IEEE Photon. Technol. Lett. 15, 581–583 (2003).

    Article  ADS  Google Scholar 

  131. Lin, I. S., McKinney, J. D. & Weiner, A. Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication. IEEE Microwave Wireless Compon. Lett. 15, 226–228 (2005).

    Article  Google Scholar 

  132. Torres-Company, V., Lancis, J. & Andrés, P. Arbitrary waveform generator based on all-incoherent pulse shaping. IEEE Photon. Technol. Lett. 18, 2626–2628 (2006).

    Article  ADS  Google Scholar 

  133. Levinson, O. & Horowitz, M. Generation of complex microwave and millimeter-wave pulses using dispersion and Kerr effect in optical fiber systems. J. Lightwave Technol. 21, 1179–1187 (2003).

    Article  ADS  Google Scholar 

  134. McKinney, J. D. & Weiner, A. M. Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse-shaping techniques. IEEE Trans. Microwave Theory Tech. 54, 1681–1685 (2006).

    Article  ADS  Google Scholar 

  135. Bortnik, B., Poberezhskiy, I., Chou, J., Jalali, B. & Fetterman, H. Predistortion technique for RF-photonic generation of high-power ultrawideband arbitrary waveforms. J. Lightwave Technol. 24, 2752–2759 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Capmany.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capmany, J., Novak, D. Microwave photonics combines two worlds. Nature Photon 1, 319–330 (2007). https://doi.org/10.1038/nphoton.2007.89

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.89

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing