Article | Published:

Operation of a free-electron laser from the extreme ultraviolet to the water window

Nature Photonics volume 1, pages 336342 (2007) | Download Citation

Abstract

We report results on the performance of a free-electron laser operating at a wavelength of 13.7 nm where unprecedented peak and average powers for a coherent extreme-ultraviolet radiation source have been measured. In the saturation regime, the peak energy approached 170 µJ for individual pulses, and the average energy per pulse reached 70 µJ. The pulse duration was in the region of 10 fs, and peak powers of 10 GW were achieved. At a pulse repetition frequency of 700 pulses per second, the average extreme-ultraviolet power reached 20 mW. The output beam also contained a significant contribution from odd harmonics of approximately 0.6% and 0.03% for the 3rd (4.6 nm) and the 5th (2.75 nm) harmonics, respectively. At 2.75 nm the 5th harmonic of the radiation reaches deep into the water window, a wavelength range that is crucially important for the investigation of biological samples.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Demonstration of a soft x-ray amplifier. Phys. Rev. Lett. 54, 110–113 (1985).

  2. 2.

    et al. Demonstration of soft x-ray amplification in nickel-like ions. Phys. Rev. Lett. 59, 2157–2160 (1987).

  3. 3.

    et al. A high-intensity highly coherent soft X-ray femtosecond laser seeded by a high harmonic beam. Nature 431, 426–429 (2004).

  4. 4.

    et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31–L33 (1988).

  5. 5.

    , , , & Multiple-harmonic generation in rare gases at high laser intensity. Phys. Rev. A 32, 5751–5761 (1989).

  6. 6.

    et al. High harmonic generation in the relativistic limit. Nature Phys. 3, 456–459 (2006).

  7. 7.

    & Generation of coherent radiation by a relativistic electron beam in an undulator. Part. Accelerators 10, 207–216 (1980).

  8. 8.

    , & On the possibility of using a free-electron laser for polarization of electrons in storage rings. Nucl. Instrum. Methods 193, 415–421 (1982).

  9. 9.

    & Free electron lasers for the XUV spectral region. Nucl. Instrum. Methods A 237, 159–167 (1985).

  10. 10.

    et al. Measurements of gain larger than 105 at 12 µm in a self-amplified spontaneous-emission free-electron laser. Phys. Rev. Lett. 81, 4867–4870 (1998).

  11. 11.

    et al. Exponential gain and saturation of a self-amplified spontaneous emission free-electron laser. Science 292, 2037–2041 (2001).

  12. 12.

    et al. Generation of GW radiation pulses from a VUV free-electron laser operating in the femtosecond regime. Phys. Rev. Lett. 88, 104802 (2002).

  13. 13.

    et al. A new powerful source for coherent VUV radiation: Demonstration of exponential growth and saturation at the TTF free-electron laser. Eur. Phys. J. D 20, 149–156 (2002).

  14. 14.

    et al. First operation of a free-electron laser generating GW power radiation at 32 nm wavelength. Eur. Phys. J. D 37, 297–303 (2006).

  15. 15.

    et al. Multiple ionization of atom clusters by intense soft X-rays from a free-electron laser. Nature 420, 482–485 (2002).

  16. 16.

    et al. Two-color photoionization in xuv free-electron and visible laser fields. Phys. Rev. A 74, 011401 (2006).

  17. 17.

    , , & Multi-photon ionization of molecular nitrogen by femtosecond soft x-ray FEL pulses. J. Phys. B 39, L299–L304 (2006).

  18. 18.

    et al. Experimental station to study the interaction of intense femtosecond vacuum ultraviolet pulses with matter at TTF1 free electron laser. Rev. Sci. Instrum. 76, 013909 (2005).

  19. 19.

    et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Phys. 2, 839–843 (2006).

  20. 20.

    et al. (Eds) XFEL: The European X-Ray Free-Electron Laser. Technical Design Report. Preprint DESY 2006–097, (DESY, Hamburg, 2006) (see also ).

  21. 21.

    German Science Policy 2006. Science 313, 147 (2006).

  22. 22.

    et al. Linac Coherent Light Source (LCLS). Conceptual Design Report. SLAC- R593 (Stanford, 2002) (see also <>).

  23. 23.

    & (Eds) SCSS X-FEL Conceptual Design Report (Riken Harima Institute, Hyogo, Japan,) May 2005 (see also <>).

  24. 24.

    , & The Physics of Free Electron Lasers (Springer, Berlin, 1999).

  25. 25.

    , & Collective instabilities and high-gain regime in a free-electron laser. Opt. Commun. 50, 373 (1984).

  26. 26.

    et al. Start-to-end simulations of SASE FEL at the TESLA Test Facility, phase 1. Nucl. Instrum. Methods A 530, 217–233 (2004).

  27. 27.

    & Frequency chirped self-amplified spontaneous-emission free-electron lasers. Phys. Rev. ST Accel. Beams 6, 050702 (2003).

  28. 28.

    , & Self-amplified spontaneous emission FEL with energy-chirped electron beam and its application for generation of attosecond x-ray pulses. Phys. Rev. ST Accel. Beams 9, 050702 (2006).

  29. 29.

    et al. Development of MCP-based photon diagnostics at the TESLA Test Facility at DESY. Nucl. Instrum. Methods A 528, 254–257 (2004).

  30. 30.

    et al. Measurement of gigawatt radiation pulses from a vacuum and extreme ultraviolet free-electron laser. Appl. Phys. Lett. 83, 2970–2972 (2003).

  31. 31.

    , & Statistical properties of radiation from VUV and X-ray free electron laser. Opt. Commun. 148, 383–403 (1998).

  32. 32.

    et al. Monochromator beamline for FLASH. Rev. Sci. Instrum. 77, 115108 (2006).

  33. 33.

    Free-electron lasers operating in higher harmonics. Phys. Rev. A 24, 639–641 (1981).

  34. 34.

    , & Nonlinear harmonic generation in free-electron lasers. IEEE J. Quant. Electron. 36, 275–281 (2000).

  35. 35.

    , & Three-dimensional analysis of harmonic generation in high-gain free-electron lasers. Phys. Rev. E. 62, 7295–7308 (2000).

  36. 36.

    , & Properties of the third harmonic of the radiation from self-amplified spontaneous emission free electron laser. Phys. Rev. ST Accel. Beams 9, 030702 (2006).

  37. 37.

    , , & Exact solution for second harmonic generation in XFELs, Opt. Commun. 271, 207–218 (2007).

  38. 38.

    , & FAST: A three-dimensional time-dependent FEL simulation code. Nucl. Instrum. Methods A 429, 233–237 (1999).

  39. 39.

    et al. The SASE FEL at DESY: photon beam diagnostics for the user facility. AIP Conf. Proc. 705, 588–592 (2004).

  40. 40.

    et al. Grazing–incidence spectrometer for the monitoring of the VUV FEL beam at DESY. J. Electron. Spec. Relat. Phenom. 144, 1055 (2005).

  41. 41.

    , , & Mechanically ruled aberration-corrected concave gratings for a flat-field grazing-incidence spectrograph. Appl. Opt. 22, 512 (1983).

Download references

Acknowledgements

The authors are indebted to the invaluable support of the technical staff of DESY and participating groups from the TESLA Technical Collaboration.

Author information

Affiliations

  1. Technische Universität Darmstadt, FB 18, Institut TEMF, Schlossgartenstr. 8, 64289 Darmstadt, Germany

    • W. Ackermann
    • , W. F. O. Müller
    • , S. Schnepp
    •  & T. Weiland
  2. Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany

    • G. Asova
    • , J. Bähr
    • , U. Gensch
    • , H.-J. Grabosch
    • , S. Khodyachykh
    • , K. Klose
    • , S. Korepanov
    • , M. Krassilnikov
    • , A. Oppelt
    • , B. Petrosyan
    • , L. Poletto
    • , M. Sachwitz
    • , L. Staykov
    •  & F. Stephan
  3. Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22603 Hamburg, Germany

    • V. Ayvazyan
    • , A. Azima
    • , N. Baboi
    • , V. Balandin
    • , A. Brandt
    • , R. Brinkmann
    • , P. Castro
    • , S. Choroba
    • , W. Decking
    • , M. Dohlus
    • , S. Düsterer
    • , B. Faatz
    • , J. Feldhaus
    • , K. Flöttmann
    • , Ch. Gerth
    • , M. Görler
    • , N. Golubeva
    • , O. Grimm
    • , K. Hacker
    • , U. Hahn
    • , J. H. Han
    • , T. Hott
    • , M. Hüning
    • , R. Kammering
    • , V. Katalev
    • , V. Kocharyan
    • , M. Körfer
    • , M. Kollewe
    • , D. Kostin
    • , G. Kube
    • , M. Kuhlmann
    • , L. Lilje
    • , T. Limberg
    • , D. Lipka
    • , W. D. Möller
    • , D. Nölle
    • , T. Nuñez
    • , N. Pchalek
    • , B. Petersen
    • , G. Petrosyan
    • , L. Petrosyan
    • , J. Pflüger
    • , E. Plönjes
    • , E. Prat
    • , D. Proch
    • , P. Radcliffe
    • , H. Redlin
    • , K. Rehlich
    • , M. Roehrs
    • , V. Rybnikov
    • , E. L. Saldin
    • , H. Schlarb
    • , B. Schmidt
    • , M. Schmitz
    • , J. R. Schneider
    • , E. A. Schneidmiller
    • , S. Schreiber
    • , M. Seidel
    • , S. Simrock
    • , E. Sombrowski
    • , B. Steffen
    • , F. Stulle
    • , H. Thom
    • , K. Tiedtke
    • , M. Tischer
    • , S. Toleikis
    • , R. Treusch
    • , D. Trines
    • , E. Vogel
    • , H. Weise
    • , M. Wendt
    • , A. Winter
    • , K. Wittenburg
    • , M. V. Yurkov
    • , I. Zagorodnov
    •  & K. Zapfe
  4. Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg, Germany

    • B. Beutner
    • , H. Delsim-Hashemi
    • , A. Eckhardt
    • , L. Fröhlich
    • , K. Hacker
    • , K. Honkavaara
    • , F. Löhl
    • , M. Martins
    • , V. Miltchev
    • , N. Pchalek
    • , E. Prat
    • , M. Roehrs
    • , J. Roensch
    • , J. Rossbach
    • , P. Schmüser
    • , M. Wellhöfer
    •  & W. Wurth
  5. Bayerische Julius-Maximilians Universität, Institut für Theor. Physik und Astrophysik, Am Hubland, 97074 Wurzburg, Germany

    • A. Bolzmann
  6. Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia

    • O. I. Brovko
    •  & A. V. Shabunov
  7. INFN-LNF, via E. Fermi 40, 00044 Frascati, Italy

    • M. Castellano
    •  & G. Di Pirro
  8. INFN-Roma Tor Vergata, Via della Ricerca Scientifica, 1, 00133 Rome, Italy

    • L. Catani
    • , E. Chiadroni
    •  & A. Cianchi
  9. National Center for Plasma Science and Technology and School for Physical Sciences, Dublin City University, Dublin, Ireland

    • J. T. Costello
    • , J. Dardis
    • , K. Kavanagh
    • , E. T. Kennedy
    • , H. Luna
    • , J. Pedregosa-Gutierrez
    •  & P. Yeates
  10. LIXAM/CNRS, Centre Universitaire Paris-Sud, Batiment 350, F-91405 Orsay Cedex, France

    • D. Cubaynes
    •  & M. Meyer
  11. International Research Centre for Experimental Physics, Queen's University, Belfast, BT7 1NN, UK

    • A. Delserieys
    •  & C. L. S. Lewis
  12. Fermi National Accelerator Laboratory, MS 306, P.O.Box 500, Batavia, Illinois 60510, USA

    • H. T. Edwards
    •  & M. Wendt
  13. Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025, USA

    • J. Frisch
    •  & M. Ross
  14. Laboratoire de L'Accelerateur Lineaire, IN2P3-CNRS, Universite de Paris-Sud, B.P. 34, 91898 Orsay, France

    • T. Garvey
  15. Technical University of Lodz, Al. Politechniki 11, Lodz, Poland

    • M. Grecki
    • , T. Jezynski
    •  & O. Napieralski
  16. Kharkiv National University, 4 Svobody sq, 61077, Kharkiv, Ukraine

    • Y. Ivanisenko
    •  & R. Spesyvtsev
  17. BESSY GmbH, Albert-Einstein-Str.15, 12489 Berlin, Germany

    • E. Jaeschke
  18. Institute of Electronic Systems, Warsaw University of Technology, Nowowiejska 15/19, Warsaw, Poland

    • W. Jalmuzna
    • , W. Koprek
    • , K. Pozniak
    • , P. Pucyk
    •  & R. Romaniuk
  19. CEA Saclay, 91191 Gif-sur-Yvette, France

    • M. Luong
    • , O. Napoly
    • , R. Paparella
    •  & C. Simon
  20. INFN Milano-LASA, via Fratelli Cervi 201,l 20090 Segrate (MI), Italy

    • P. Michelato
    • , L. Monaco
    • , C. Pagani
    •  & D. Sertore
  21. CNR-INFM, Department of Information Engineering, University of Padova, via Gradenigo 6/B, 35131, Padova, Italy

    • P. Nicolosi
  22. Physikalisch-Technische Bundesanstalt, PTB, Abbestrasse 2-12, D-10587 Berlin, Germany

    • M. Richter
    •  & A. A. Sorokin
  23. Max-Born-Institute, Max-Born-Str. 2a, 12489 Berlin, Germany

    • W. Sandner
    •  & I. Will
  24. Paul Scherrer Institute, 5232 Villigen PSI, Switzerland

    • M. Seidel
  25. Ioffe Physico-Technical Institute RAS, Polytekhnicheskaya 26, 194021 St. Petersburg, Russia

    • A. A. Sorokin
  26. Humboldt Universität, Unter den Linden 6, 10099 Berlin, Germany

    • P. Spanknebel
  27. Institute for Nuclear Researches and Nuclear Energy, Tzarigradsko Shaussee Boulevard 72, 1784 Sofia, Bulgaria

    • I. Tsakov

Authors

  1. Search for W. Ackermann in:

  2. Search for G. Asova in:

  3. Search for V. Ayvazyan in:

  4. Search for A. Azima in:

  5. Search for N. Baboi in:

  6. Search for J. Bähr in:

  7. Search for V. Balandin in:

  8. Search for B. Beutner in:

  9. Search for A. Brandt in:

  10. Search for A. Bolzmann in:

  11. Search for R. Brinkmann in:

  12. Search for O. I. Brovko in:

  13. Search for M. Castellano in:

  14. Search for P. Castro in:

  15. Search for L. Catani in:

  16. Search for E. Chiadroni in:

  17. Search for S. Choroba in:

  18. Search for A. Cianchi in:

  19. Search for J. T. Costello in:

  20. Search for D. Cubaynes in:

  21. Search for J. Dardis in:

  22. Search for W. Decking in:

  23. Search for H. Delsim-Hashemi in:

  24. Search for A. Delserieys in:

  25. Search for G. Di Pirro in:

  26. Search for M. Dohlus in:

  27. Search for S. Düsterer in:

  28. Search for A. Eckhardt in:

  29. Search for H. T. Edwards in:

  30. Search for B. Faatz in:

  31. Search for J. Feldhaus in:

  32. Search for K. Flöttmann in:

  33. Search for J. Frisch in:

  34. Search for L. Fröhlich in:

  35. Search for T. Garvey in:

  36. Search for U. Gensch in:

  37. Search for Ch. Gerth in:

  38. Search for M. Görler in:

  39. Search for N. Golubeva in:

  40. Search for H.-J. Grabosch in:

  41. Search for M. Grecki in:

  42. Search for O. Grimm in:

  43. Search for K. Hacker in:

  44. Search for U. Hahn in:

  45. Search for J. H. Han in:

  46. Search for K. Honkavaara in:

  47. Search for T. Hott in:

  48. Search for M. Hüning in:

  49. Search for Y. Ivanisenko in:

  50. Search for E. Jaeschke in:

  51. Search for W. Jalmuzna in:

  52. Search for T. Jezynski in:

  53. Search for R. Kammering in:

  54. Search for V. Katalev in:

  55. Search for K. Kavanagh in:

  56. Search for E. T. Kennedy in:

  57. Search for S. Khodyachykh in:

  58. Search for K. Klose in:

  59. Search for V. Kocharyan in:

  60. Search for M. Körfer in:

  61. Search for M. Kollewe in:

  62. Search for W. Koprek in:

  63. Search for S. Korepanov in:

  64. Search for D. Kostin in:

  65. Search for M. Krassilnikov in:

  66. Search for G. Kube in:

  67. Search for M. Kuhlmann in:

  68. Search for C. L. S. Lewis in:

  69. Search for L. Lilje in:

  70. Search for T. Limberg in:

  71. Search for D. Lipka in:

  72. Search for F. Löhl in:

  73. Search for H. Luna in:

  74. Search for M. Luong in:

  75. Search for M. Martins in:

  76. Search for M. Meyer in:

  77. Search for P. Michelato in:

  78. Search for V. Miltchev in:

  79. Search for W. D. Möller in:

  80. Search for L. Monaco in:

  81. Search for W. F. O. Müller in:

  82. Search for O. Napieralski in:

  83. Search for O. Napoly in:

  84. Search for P. Nicolosi in:

  85. Search for D. Nölle in:

  86. Search for T. Nuñez in:

  87. Search for A. Oppelt in:

  88. Search for C. Pagani in:

  89. Search for R. Paparella in:

  90. Search for N. Pchalek in:

  91. Search for J. Pedregosa-Gutierrez in:

  92. Search for B. Petersen in:

  93. Search for B. Petrosyan in:

  94. Search for G. Petrosyan in:

  95. Search for L. Petrosyan in:

  96. Search for J. Pflüger in:

  97. Search for E. Plönjes in:

  98. Search for L. Poletto in:

  99. Search for K. Pozniak in:

  100. Search for E. Prat in:

  101. Search for D. Proch in:

  102. Search for P. Pucyk in:

  103. Search for P. Radcliffe in:

  104. Search for H. Redlin in:

  105. Search for K. Rehlich in:

  106. Search for M. Richter in:

  107. Search for M. Roehrs in:

  108. Search for J. Roensch in:

  109. Search for R. Romaniuk in:

  110. Search for M. Ross in:

  111. Search for J. Rossbach in:

  112. Search for V. Rybnikov in:

  113. Search for M. Sachwitz in:

  114. Search for E. L. Saldin in:

  115. Search for W. Sandner in:

  116. Search for H. Schlarb in:

  117. Search for B. Schmidt in:

  118. Search for M. Schmitz in:

  119. Search for P. Schmüser in:

  120. Search for J. R. Schneider in:

  121. Search for E. A. Schneidmiller in:

  122. Search for S. Schnepp in:

  123. Search for S. Schreiber in:

  124. Search for M. Seidel in:

  125. Search for D. Sertore in:

  126. Search for A. V. Shabunov in:

  127. Search for C. Simon in:

  128. Search for S. Simrock in:

  129. Search for E. Sombrowski in:

  130. Search for A. A. Sorokin in:

  131. Search for P. Spanknebel in:

  132. Search for R. Spesyvtsev in:

  133. Search for L. Staykov in:

  134. Search for B. Steffen in:

  135. Search for F. Stephan in:

  136. Search for F. Stulle in:

  137. Search for H. Thom in:

  138. Search for K. Tiedtke in:

  139. Search for M. Tischer in:

  140. Search for S. Toleikis in:

  141. Search for R. Treusch in:

  142. Search for D. Trines in:

  143. Search for I. Tsakov in:

  144. Search for E. Vogel in:

  145. Search for T. Weiland in:

  146. Search for H. Weise in:

  147. Search for M. Wellhöfer in:

  148. Search for M. Wendt in:

  149. Search for I. Will in:

  150. Search for A. Winter in:

  151. Search for K. Wittenburg in:

  152. Search for W. Wurth in:

  153. Search for P. Yeates in:

  154. Search for M. V. Yurkov in:

  155. Search for I. Zagorodnov in:

  156. Search for K. Zapfe in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to M. V. Yurkov.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary information, figures S1-S7, tables S1-S2

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2007.76

Further reading